摘要:
An electrical coupling is provided between chamber parts of electronic device processing equipment (e.g., equipment used for processing semiconductor wafers) to reduce differences in the electrical potential between such parts. The coupling prevents or at least reduces the presence of plasma or excited gases in undesired regions of the process chamber. In illustrated embodiments, the coupling extends from a cover of a vertically movable electrode assembly to the liner of the chamber wall. Although these parts are each respectively coupled to ground, it is believed that differences in the ground path impedances result in these parts having different electrical potentials, and the potential differences can cause plasma or excited gases to be present in undesirable regions of the chamber. These electrical potential differences are suppressed by electrically coupling the parts to thereby prevent or reduce the presence of plasma or excited gases in undesired regions of the chamber. Although in the illustrated embodiments the cover of the electrode assembly is coupled to the chamber liner, the coupling could be utilized to suppress potential differences between other chamber parts.
摘要:
An arrangement for improved thermal and/or electrical coupling between parts disposed in electronic device processing equipment is provided. In an illustrated embodiment, an improved coupling between a chamber liner and a chamber wall is provided which can be utilized in semiconductor processing equipment. The arrangement includes a compressible coupling or gasket which is compressed between a wedge ring and the chamber wall. The chamber liner is coupled to the wedge ring, so that the chamber liner is coupled to the chamber wall by way of the wedge ring and compressible coupling.
摘要:
The invention for etching a substrate containing an oxide layer reduces activated oxygen within the plasma and maintains a high soft etch rate in a series of subsequent etches. In one aspect of the invention, a second substrate, in the form of a substrate ring, is utilized in the processing chamber and is etched in conjunction with a first substrate being processed. This substrate ring is formed of a material which, when etched, reacts with activated oxygen to form a stable oxygen-containing compound which may be evacuated from the system. In another aspect of the invention, a first power level for inductively coupling energy to the plasma is determined to establish a bias voltage level at the substrate of approximately 100 Volts. A second, lower power level is then determined for producing a bias voltage level at the substrate not significantly higher than 300 Volts. With the range provided by the determined first and second power levels, an etching power level is selected for inductively coupling energy to the plasma in the range of the first and second power levels but closer to the second power level than the first power level to reduce oxygen activated in the plasma. The etching power level is also selected to establish an etch rate of the substrate in the range of approximately 300-500 .ANG./min. for a semiconductor oxide such as silicon dioxide, and 75-125 .ANG./min. for a metal oxide, which would be considered a soft etch.
摘要:
A processing system for processing a substrate with a plasma comprises a processing chamber defining a process space including a support structure for supporting a substrate within the process space. A gas inlet in the chamber introduces a process gas into the chamber and a showerhead positioned within the chamber disperses process gas from the inlet. A supply of electrical energy biases the showerhead to form a plasma with process gas dispersed by the showerhead. First and second electrical insulator elements are positioned between the showerhead and the processing chamber, and are operable to electrically insulate the showerhead from the processing chamber. The first and second electrical insulator elements each have a passage therethrough for passing a process gas from the gas inlet through the insulator element and the respective passages of the insulator elements are laterally spaced from each other. A channel is formed in one of the elements and extends between the spaced passages to couple the passages together and form a complete passage through the first and second insulator elements for passing a process gas to the showerhead.