Abstract:
A hinge for a door, flap or similar pivotal wings of a motor vehicle is provided. The hinge includes a column-side hinge part and a door-side hinge part, which can be pivoted about a hinge pillar relative to each other, and with an integrated door retaining device, which includes a retaining element arranged on the side of the one hinge part, which cooperates with a retaining contour on the side of the other hinge part. The retaining element is formed as clamp element cooperating with a clamping surface of the hinge pillar, the clamping force of which can be adjusted by means of a transmission element as a function of the retaining contour.
Abstract:
Electronic components each having a chip module with module contacts and an antenna having antenna contacts is made by securing a plurality of the chip modules the inner face of a module film strip having an outer periphery projecting past the chip module with the chip modules spaced from one another at a uniform predetermined module spacing. A plurality of the antennas are secured to an inner face of an elongated antenna strip with the antennas spaced from one another by a predetermined antenna spacing. The module strip is longitudinally subdivided into sections each of which is of a length equal to the predetermined module spacing and each of which carries a respective chip module. The module-strip sections are pressed against the antenna strip such that the module contacts of each of the chip modules engage and bear on the antenna contacts of a respective antenna.
Abstract:
The invention relates to method for producing an RFID label. According to said method, a coupling antenna (2) arranged on a web-shaped support material (1) comprising an RFID chip (4) arranged thereon is glued onto a secondary antenna (10). The aim of the invention is to provide an RFID label that can be produced from few recyclable materials with little complication and in an environmentally friendly manner. The invention is characterized in that first the coupling antenna (2) comprising the chip (4) is glued onto a self-adhesive secondary antenna (10) in one step, the secondary antenna having a backing adhesive layer (12).
Abstract:
The invention relates to a chip module for an RFID system comprising a web-type or sheet-type support material (4) on the upper face of which a coupling antenna (2) and an RFID chip (3), which is electrically, especially galvanically, connected to the coupling antenna (2), are arranged and the lower face of which is provided with an adhesive layer (9). The coupling antenna (2) consists of an aluminum layer (7) having a thickness of 1 μm-20 μm, especially of 3 μm-12 μm.
Abstract:
The invention relates to a self-adhesive antenna for an RFID system, in particular an RFID label, wherein, according to the invention, the antenna (1), from a sheet of aluminum (7) of a gauge of 1 μm-20 μm, in particular approximately 10 μm, is glued to the front of an adhesive material (3) and punched out, wherein an adhesive layer (4) is provided on the back side of the adhesive material (3).
Abstract:
The invention relates to method for producing an RFID label. According to said method, a coupling antenna (2) arranged on a web-shaped support material (1) comprising an RFID chip (4) arranged thereon is glued onto a secondary antenna (10). The aim of the invention is to provide an RFID label that can be produced from few recyclable materials with little complication and in an environmentally friendly manner. The invention is characterized in that first the coupling antenna (2) comprising the chip (4) is glued onto a self-adhesive secondary antenna (10) in one step, the secondary antenna having a backing adhesive layer (12).
Abstract:
For removing defective transponder units or electronic transponder equipment a web (6)is parted in a station (23) firstly in front and then at the rear of the individual unit. Thereafter the picked out unit is conveyed off transverse to a working plane (3)and the two resulting web ends are transferred into a directly juxtaposed station (24). There the web ends are fixedly interconnected by welding, glueing or the like. Therefrom a use web arises, which includes only non-defective units since the defective units were previously detected by a sensor (32)and then severed out as described with the aid of a control device (50). This fully automatically working apparatus (1)coils the processed use tape in a store (26)into a roll (40)which is suitable for further processing in a machine.
Abstract:
An RFID antenna assembly is made by first adhering a continuous aluminum foil between 1 μm and 20 μm thick by an adhesive film to a front face of a mounting layer, then providing on a back face of the mounting layer a film of contact adhesive, and then releasably securing to the mounting-layer back face a backing strip. The foil and the mounting layer but not the backing strip are then punched through so as to punch out antennas from the foil and identical pieces from the mounting layer. Finally the foil and mounting layer are stripped from around the punched-out antennas on the backing strip to leave on the backing strip a row only of the punched-out antennas and the respective pieces of the mounting layer.
Abstract:
In the leak detection method, it is provided that a specimen (24) filled with a test gas is positioned in front of a suction opening (11). The suctioned air brushes along the surface of said specimen and takes up test gas in the case of a leak. Said test gas is recognized by a test gas detector (17,17a). According to the invention, full mobility of said specimen (24) is ensured during the testing process such that a test can also be carried out while said specimens are moving past said suction opening.
Abstract:
The invention relates to a method and device for continuously producing electronic film components, during which chip modules (5) are, via their electrical connecting contacts (3), placed on antenna connections (2) of antenna film sections. The invention provides that: the chip modules (5), via their rear side facing away from the connecting contacts (3), are placed on adhesive film sections (7, 8) whose base area is significantly larger than a base area of each chip module; the electric connecting contacts of the chip modules are electrically contacted by antenna connections, and; the adhesive film sections (7, 8) are flatly joined to the antenna film sections in such a manner that the chip modules are fixed in their position relative to the antenna connections. The invention is for use in flexible transponder labels.