Abstract:
A dry non-plasma treatment system and method for removing oxide material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.
Abstract:
A dry non-plasma treatment system and method for removing oxide material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.
Abstract:
A dry non-plasma treatment system and method for removing oxide material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry, including HF and optionally NH3, under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.
Abstract:
A processing system and method for chemical oxide removal, wherein the processing system includes a process chamber having a lower chamber portion configured to chemically treat a substrate and an upper chamber portion configured to thermally treat the substrate, and a substrate lifting assembly configured to transport the substrate between the lower chamber portion and the upper chamber portion. The lower chamber portion includes a chemical treatment environment that provides a temperature controlled substrate holder for supporting the substrate for chemical treatment. The substrate is exposed to a gaseous chemistry, such as HF/NH3, under controlled conditions including surface temperature and gas pressure. The upper chamber portion includes a thermal treatment environment that provides a heating assembly configured to elevate the temperature of the substrate.
Abstract:
A method and system are described for operating a processing system in order to optimize throughput. The processing system is configured for chemical oxide removal, wherein the processing system includes a process chamber having a lower chamber portion configured to chemically treat a substrate and an upper chamber portion configured to thermally treat the substrate, and a substrate lifting assembly configured to transport the substrate between the lower chamber portion and the upper chamber portion.
Abstract:
A processing system and method for chemical oxide removal, wherein the processing system includes a process chamber having a lower chamber portion configured to chemically treat a substrate and an upper chamber portion configured to thermally treat the substrate, and a substrate lifting assembly configured to transport the substrate between the lower chamber portion and the upper chamber portion. The lower chamber portion includes a chemical treatment environment that provides a temperature controlled substrate holder for supporting the substrate for chemical treatment. The substrate is exposed to a gaseous chemistry, such as HF/NH3, under controlled conditions including surface temperature and gas pressure. The upper chamber portion includes a thermal treatment environment that provides a heating assembly configured to elevate the temperature of the substrate.