摘要:
A sensor element for determining the concentration of a gas component in a gas mixture, particularly for determining the oxygen concentration in exhaust gases of internal combustion engines. The sensor element includes at least one pump cell, which has at least one first pump electrode located in a measuring gas chamber and at least one second pump electrode, located on a surface of the sensor element facing the gas mixture, as well as at least one concentration cell, which has at least one reference electrode located in a reference gas chamber and at least one measuring electrode, located in the measuring gas chamber, which cooperates with the reference electrode. The measuring gas chamber and the reference gas chamber are essentially located in the same layer level (plane) of the sensor element which has a layered construction. At least one barrier layer is provided which, at least to a large extent, prevents ionic conduction between at least one electrode of the pump cell and at least one electrode of the concentration cell.
摘要:
An electrochemical sensor determining a gas concentration of the measuring gas. The sensor has an electrochemical element including a first solid electrolyte body having an electrochemical pump cell and a first (external pump) and a second (internal pump) electrode and having a gas chamber which is connected to the measuring gas chamber via a gas supply opening and in which the second electrode is arranged. The electrochemical element also includes a second solid electrolyte body having an electrochemical sensor cell (e.g., a Nernst cell) and a third and fourth electrode, each electrode having a lead for the electrical contacting. The leads of the first and second electrodes are decoupled capacitively from the lead of at least the fourth electrode by a device.
摘要:
A probe is described for determining an oxygen concentration in a gas mixture, in particular in the exhaust gas of internal combustion engines, having a Nernst measuring cell, which has a first electrode (Nernst electrode) which is exposed to the gas mixture to be measured via a diffusion barrier, a second electrode (reference electrode) which is exposed to a reference gas, and a solid electrolyte body arranged between the first and the second electrode, and having a pump cell, which has a first electrode (inner pump electrode) which is exposed to the gas mixture via the diffusion barrier, a second electrode (outer pump electrode) which is exposed to the gas mixture, and a solid electrolyte body arranged between the first and the second electrode. The Nernst electrode and the inner pump electrode are connected at least in some sections via a joint supply conductor to a circuit arrangement for controlling and evaluating the probe. A joint supply conductor resistor of the Nernst electrode and of the inner pump electrode is formed by a loaded voltage divider whose individual resistors are arranged so that the negative feedback of a Nernst voltage circuit and of a pump voltage circuit is optimized, in particular maximized.
摘要:
A sensor element for determining gas components in gas mixtures and a method for manufacturing the sensor element are provided, the sensor element having at least one pump cell which includes a first electrode and a second electrode, the first electrode being situated in a measuring gas space of the sensor element, and the pump cell pumping oxygen into or out of the measuring gas space of the sensor element. The surface area of the second electrode is greater than that of the first electrode, and the second electrode has a diffusion barrier against the gas mixture diffusing to the second electrode, the diffusion resistance of the diffusion barrier being determined by its porosity and/or layer thickness being selected such that, given a predefined pump voltage applied to the first and second electrodes, essentially the same pump current flows between the electrodes as would flow if the diffusion barrier were not provided and both electrodes had the same surface areas exposed to the gas mixture.
摘要:
In a method and a control device for operating a broadband lambda sensor, the oxygen concentration of an exhaust gas is determined based on a comparison of a Nernst voltage with a reference voltage having a nominal value; a pump current is injected into a cavity of a pump cell if a deviation is present, an electric voltage present at the pump cell being regulated in such a manner that lambda=1 prevails in the cavity, the pump current being a measure for the value of lambda in the exhaust gas; and, in order to avoid control interference in the start phase of the engine or in the cold phase of the sensor, the Nernst voltage is maintained close to the reference voltage, using a pilot control, until the Nernst voltage is an actual measure for the oxygen concentration in the cavity of the pump cell.
摘要:
The invention relates to a method for the voltage-controlled performance regulation of the heating of an exhaust-gas probe in the exhaust system of an internal combustion engine. The aim of the invention is to provide a method in which the operating temperature of the probe is achieved in the shortest possible time without damage to the probe. To achieve this, the heating voltage during the heating phase of the probe is rapidly brought up to a high temperature in a start phase in relation to a subsequent phase, or a dramatic leap in temperature is achieved, preferably up to the full operating voltage and the heating voltage is then continuously or quasi-continuously reduced.
摘要:
In a method and a control device for operating a broadband lambda sensor in which the oxygen concentration of an exhaust gas is determined on the basis of a comparison of a Nernst voltage with a reference voltage having a nominal value, and a pump current is injected into a cavity of a pump cell if a deviation is present, an electric voltage present at the pump cell being regulated in such a manner that lambda=1 prevails in the cavity, the pump current being a measure for the value of lambda in the exhaust gas, in order to avoid control interference in the start phase of the engine or in the cold phase of the sensor, it is provided that the Nernst voltage is maintained close to the reference voltage, using a pilot control, until the Nernst voltage is an actual measure for the oxygen concentration in the cavity of the pump cell.
摘要:
A sensor element is provided for determining a physical property of a measuring gas, especially of the concentration of at least one gas component in the measuring gas, which has at least one ceramic layer, a diffusion barrier adjoining the at least one ceramic layer and at least one electrode that is exposed to the measuring gas diffusing through the diffusion barrier. In order to reduce the production variations with respect to the static pressure dependence and the limiting current of the diffusion barrier), the proportions of silicon in the diffusion barrier and in the at least one ceramic layer are approximately equal and differ by not more than 1 wt. %.
摘要:
A gas sensor for detecting at least one physical magnitude of a gas, in particular of exhaust gases of an internal combustion engine, is proposed, which includes a sensor element having an electrochemical cell. The electrochemical cell includes a first solid electrolyte member on which a first electrode and a second electrode are applied. The first and the second electrode are electrically connected by means of the first solid electrolyte member. The first electrode is in contact with the gas. The area of the first electrode is smaller than the area of the second electrode.
摘要:
A sensor element is provided for determining a physical property of a measuring gas, especially of the concentration of at least one gas component in the measuring gas, which has at least one ceramic layer, a diffusion barrier adjoining the at least one ceramic layer and at least one electrode that is exposed to the measuring gas diffusing through the diffusion barrier. In order to reduce the production variations with respect to the static pressure dependence and the limiting current of the diffusion barrier), the proportions of silicon in the diffusion barrier and in the at least one ceramic layer are approximately equal and differ by not more than 1 wt. %.