摘要:
The present invention provides a synthetic quartz glass having a diameter of 100 mm or more for using in an optical apparatus comprising a light source emitting a light having a wavelength of 250 nm or less, the synthetic quartz glass having, in a region located inward from the periphery thereof by 10 mm or more in a plane perpendicular to the optical axis of the synthetic quartz glass: a birefringence of 0.5 nm or less per thickness of 1 cm with respect to a light having a wavelength of 193 nm; an OH group concentration of 60 ppm or less; an averaged differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of −8 to +60 ppm; and an unbiased standard deviation a of a differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of 10 ppm or less, the unbiased standard deviation a being determined with the following formula (1): σ = ∑ i = 1 n ( X i - X _ ) 2 n - 1 providing ; X i = Δ n _ OH i Δ r i * = n _ OH i - n _ OH i + 1 r i * - r i + 1 * ( 1 ) : differential OH group concentration at measurement point i normalized with respect to the radius R of the synthetic quartz glass; n _ OH i = n OH i - 1 + n OH i + n OH i + 1 3 : OH group concentration at measurement point i in terms of moving average for three points including the two points before and after the measurement point i; r i * = r i R : radius at measurement point i normarized with respect to the radius R of the synthetic quartz glass; X : average of OH group concentrations Xi in the whole evaluation region; and n : number of measurement points in the evaluation region (integer of 2 or more).
摘要:
The present invention provides a synthetic quartz glass having a diameter of 100 mm or more for using in an optical apparatus comprising a light source emitting a light having a wavelength of 250 nm or less, the synthetic quartz glass having, in a region located inward from the periphery thereof by 10 mm or more in a plane perpendicular to the optical axis of the synthetic quartz glass: a birefringence of 0.5 nm or less per thickness of 1 cm with respect to a light having a wavelength of 193 nm; an OH group concentration of 60 ppm or less; an averaged differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of not less than −60 ppm and less than −8 ppm; and an unbiased standard deviation σ of a differential OH group concentration from the center of the synthetic quartz glass toward a peripheral direction thereof, normalized with respect to the radius of the synthetic quartz glass, of 10 ppm or less, the unbiased standard deviation σ being determined with the following formula (1): σ = ∑ i = 1 n ( X i - X _ ) 2 n - 1 providing ; X i = Δ n _ OHi Δ r i * = n _ OHi - n _ OHi + 1 r i * - r i + 1 * : ( 1 ) differential OH group concentration at measurement point i normalized with respect to the radius R of the synthetic quartz glass; n _ OHi = n OHi - 1 + n OHi + n OHi + 1 3 : OH group concentration at measurement point i in terms of moving average for three points including the two points before and after the measurement point i; r i * = r i R : radius at measurement point i normarized with respect to the radius R of the synthetic quartz glass; X: average of OH group concentrations Xi in the whole evaluation region; and n: number of measurement points in the evaluation region (integer of 2 or more).
摘要:
The present invention provides a synthetic silica glass for an optical member in which not only a fast axis direction in an optical axis direction is controlled, and a birefringence in an off-axis direction is reduced, but a magnitude of a birefringence in the optical axis direction is controlled to an arbitrary value, such that an average value of a value BR cos 2θxy defined from a birefringence BR and a fast axis direction θxy as measured from a parallel direction to the principal optical axis direction is defined as an average birefringence AveBR cos 2θxy, and when a maximum value of a birefringence measured from a vertical direction to the principal optical axis direction of the optical member is defined as a maximum birefringence BRmax in an off-axis direction, the following expression (1-1) and expression (2-1) are established: −1.0≦AveBR cos 2θxy
摘要翻译:本发明提供一种用于光学构件的合成石英玻璃,其不仅控制光轴方向上的快轴方向,并且减少偏轴双折射,而且在光轴上具有双折射的大小 方向被控制为任意值,使得从平行方向到主光轴方向测量的从双折射BR和快轴方向&yt; xy定义的值BR cos 2&amp; t s; xy的平均值被定义为 平均双折射度AveBR cos 2&amp; t s; xy,并且当从垂直方向测量到光学构件的主光轴方向的双折射的最大值被定义为在偏轴方向上的最大双折射率BRmax时,以下表达式(1 -1)和表达式(2-1):-1.0&nlE; AveBR cos 2&thetas; xy <0.0(1-1)0.0&nlE; BRmax&nlE; 1.0(2-1)。
摘要:
The present invention relates to an optical member for deep ultraviolet having a wavelength of 250 nm or shorter, containing a synthetic silica glass which does not substantially contain a halogen element, has a maximum OH group content of less than 10 ppm by weight, has contents of ODC (oxygen deficient centers) and E-prime center of each less than 1×1014 cm−3, does not substantially contain SiH and peroxy linkage, and has a fictive temperature of 1,050° C. or lower.
摘要:
This disclosure provides an antenna apparatus in which stable antenna characteristics are maintained by detecting surrounding conditions that affect the antenna characteristics and appropriately compensating the antenna characteristics. More specifically, when surrounding condition such as a human body (e.g., a palm or fingers) approaches and enters an electric field of a pseudo dipole formed by an antenna element electrode, a stray capacitance is sensed and stable antenna characteristics are maintained by appropriately controlling an antenna matching circuit to compensate for a change in the antenna characteristics due to the approach of the surrounding condition.
摘要:
A nonvolatile semiconductor memory element enabling to improve insulation performance of an insulator around a floating gate and to decrease the ratio of oxidized metal ultrafine particles in the floating gate, are provided.In a process for producing nonvolatile semiconductor memory element comprising a floating gate made of a hardly oxidizable material having a Gibbs' formation free energy for forming its oxide higher than that of Si in a range of from 0° C. to 1,200° C., and an insulator made of an oxide of an easily oxidizable material surrounding the floating gate and having such an energy equivalent or lower than that of Si, the floating gate made of hardly oxidizable material is formed by using a physical forming method, the oxide of the easily oxidizable material is formed by using a physical forming method or a chemical forming method, and after a gate insulation film is formed, a heat treatment is carried out in a mixed atmosphere of an oxidizing gas and a reducing gas in a temperature range of from 0° C. to 1,200° C. while the mixture ratio of the mixed gas and the temperature are controlled so that only the hardly oxidizable material is reduced and only the oxide of the easily oxidizable material is oxidized.