摘要:
An object of the invention is to provide an inexpensive non-aqueous electrolyte secondary battery that allows reversible charge and discharge to be carried out and can be used for a long period because of a stable non-aqueous electrolyte used therein. The invention provides a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material and capable of storing and releasing sodium, a negative electrode capable of storing and releasing sodium, and a non-aqueous electrolyte, and the positive electrode active material includes sodium, nickel, manganese, and a transition metal that can exist in a hexavalent state. An example of the transition metal that can exist in a hexavalent state may include tungsten (W). An example of the negative electrode may include a sodium metal capable of storing and releasing sodium ions.
摘要:
An object of the invention is to provide an inexpensive non-aqueous electrolyte secondary battery that allows reversible charge and discharge to be carried out and can be used for a long period because of a stable non-aqueous electrolyte used therein. The invention provides a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material and capable of storing and releasing sodium, a negative electrode capable of storing and releasing sodium, and a non-aqueous electrolyte, and the positive electrode active material includes sodium, nickel, manganese, and a transition metal that can exist in a hexavalent state. An example of the transition metal that can exist in a hexavalent state may include tungsten (W). An example of the negative electrode may include a sodium metal capable of storing and releasing sodium ions.
摘要:
A rolled foil of surface roughened copper as thick as 26 μm for example having a surface formed into an irregular shape with copper precipitated thereon by an electrolytic method is prepared as a negative electrode collector. Tin (Sn) or germanium (Ge) is deposited on the rolled foil described above, so that a negative electrode active material layer is formed. Note that the deposited tin or germanium is amorphous. The arithmetic mean roughness Ra in the surface-roughened rolled foil described above is preferably not less than 0.1 μm nor more than 10 μm. A non-aqueous electrolyte is produced by adding sodium hexafluorophosphate as an electrolyte salt in a concentration of 1 mol/l to a non-aqueous solvent produced by mixing ethylene carbonate and diethyl carbonate in the ratio of 50:50 by volume.
摘要:
A material (hereinafter referred to as “positive electrode material”) including sodium manganate powder as a positive electrode active material, carbon black powder as a conductive agent, and polytetrafluoroethylene as a binder is prepared. The positive electrode material is mixed in an N-methylpyrrolidone solution to produce slurry as a positive electrode mixture. A working electrode is produced by applying the slurry on a positive electrode collector. A negative electrode containing tin or germanium is produced. The non-aqueous electrolyte is produced by adding sodium hexafluorophosphate as an electrolyte salt in a non-aqueous solvent produced by mixing ethylenecarbonate and diethyl carbonate.
摘要:
A nonaqueous electrolyte battery wherein the capacity per volume of positive electrode active material layer can be larger than in the use of carbon black only as a conductive material. This nonaqueous electrolyte battery comprises positive electrode (1) having a positive electrode active material layer, negative electrode (2) having a negative electrode active material layer, nonaqueous electrolyte (5) and a conductive material incorporated in the positive electrode active material layer, the conductive material containing carbon black of 1 to less than 800 m2/g specific surface area and at least one material selected from the group consisting of nitrides, carbides and borides.
摘要:
A nonaqueous electrolyte battery wherein the per-volume capacity of positive electrode active material layer can be increased over that exhibited in the use of carbon as a conducting material. This nonaqueous electrolyte battery comprises positive electrode (1) containing a positive electrode active material layer, negative electrode (2) containing a negative electrode active material layer, nonaqueous electrolyte (5) and a conducting material contained in the positive electrode active material layer and constituted of at least one non-carbon material selected from the group consisting of nitrides, carbides and borides, which conducting material is in the form of particles of 0.2 to 5 μm average diameter easily dispersed in the positive electrode active material layer.
摘要:
A material (hereinafter referred to as “positive electrode material”) including sodium manganate powder as a positive electrode active material, carbon black powder as a conductive agent, and polytetrafluoroethylene as a binder is prepared. The positive electrode material is mixed in an N-methylpyrrolidone solution to produce slurry as a positive electrode mixture. A working electrode is produced by applying the slurry on a positive electrode collector. A negative electrode containing tin or germanium is produced. The non-aqueous electrolyte is produced by adding sodium hexafluorophosphate as an electrolyte salt in a non-aqueous solvent produced by mixing ethylenecarbonate and diethyl carbonate.
摘要:
A low-cost, high-discharge capacity density non-aqueous electrolyte secondary battery is provided. The battery includes a positive electrode, a non-aqueous electrolyte containing sodium ions, and a negative electrode having a thin-film negative electrode active material containing germanium (Ge) as its main active material or a negative electrode active material comprising particles containing germanium as its main active material.
摘要:
A nonaqueous electrolyte battery which comprises a positive electrode including carbon fluoride or sulfur as an active material, a negative electrode including calcium as an active material, and an electrolyte including an imide salt of calcium or a sulfonic acid salt of calcium.
摘要:
As a positive electrode active material, a lithium transition metal complex oxide having a layered rock-salt structure containing lithium (Li) and containing magnesium atoms (Mg) substituted for part of lithium atoms (Li) is used. The lithium transition metal complex oxide is formed by chemical or electrochemical substitution of Mg atoms for part of Li atoms in LiCoO2, LiMnO2, LiFeO2, LiNiO2, or the like. A cell is prepared in which a negative electrode 2 and a positive electrode 1 including the lithium transition metal complex oxide (positive electrode active material) are disposed in a non-aqueous electrolyte 5 including a lithium salt, and part of Li in the lithium transition metal complex oxide is extracted by discharging the cell. Then, the electrolyte including Li is replaced with an electrolyte including Mg, and the cell is discharged, so that Mg atoms are substituted for the part of Li atoms in the lithium transition metal complex oxide.