摘要:
An object of the present invention is to provide a waste water treating method and a waste water treating apparatus which are capable of treating for-treatment water containing a nitrogen compound and a phosphorus compound at low costs and efficiently. The waste water treating method is a waste water treating method for treating a nitrogen compound (nitrate nitrogen) and a phosphorus compound (phosphate ions) in for-treatment water by electrolysis as an electrochemical process, the method comprises a first treating step of immersing a pair of electrodes in the for-treatment water at least partially so as to treat the for-treatment water by electrolysis, one of the electrodes being a cathode made of a conductive material and the other of the electrodes being an anode made of iron, and a second treating step of treating the for-treatment water with hypochlorous acid, ozone or active oxygen after completion of the first treating step.
摘要:
There are provided an electrode for electrolysis which takes into consideration safety to human bodies and environmental pollution upon disposal of the electrode, produces ozone with high efficiency and has excellent durability, a production process of the electrode, and an active oxygen producing device using the electrode. In an electrode 5 for electrolysis which has an electrode catalyst at least on the surface and produces ozone or active oxygen in for-treatment water by electrolysis, the electrode catalyst contains a dielectric which constitutes more than 70% of the surface area of the electrode catalyst.
摘要:
There are provided a nitrogen treating method and system for a nitrogen compound, which can treat the nitrogen compound efficiently and which can reduce the size and cost of an apparatus. The gist is that, in a nitrogen treating method wherein a nitrogen compound in for-treatment water is treated according to an electrochemical technique, a cathode reaction region and an anode reaction region are defined by a cation exchange membrane interposed between a cathode and an anode, and the for-treatment water treated in the cathode reaction region according to the electrochemical technique is treated with hypohalogenous acid, or, ozone or active oxygen according to a chemical technique.
摘要:
There is provided a nitrogen treating method capable of treating nitrogen compounds efficiently. The method is a nitrogen treating method of treating nitrogen compounds in for-treatment water by electrolysis and performs a first treating step of producing ammonia from the nitrogen compounds in the for-treatment water by electrolysis using a cathode and an anode between which a cation exchange film is interposed so as to define a cathode reaction region and an anode reaction region, and a second treating step of removing the ammonia in the for-treatment water treated in the cathode reaction region by the first treating step.
摘要:
In a water treatment apparatus, the time for treatment after water to be treated is introduced into an electrolytic bath is reduced. The water to be treated in a reservoir is subjected to electrolysis at a first electrolytic bath. Electrolysis is carried out at respective first and second electrolytic baths. By the electrolysis at the second electrolytic bath, hypochlorous acid is generated from chloride ions at the anode side. The solution subjected to electrolysis at the second electrolytic bath is mixed at a predetermined site of the pipe connected between the reservoir and the first electrolytic bath with the water output from the reservoir via a pipe prior to introduction into the first electrolytic bath. Accordingly, the water subjected to electrolysis at the first electrolytic bath can be sterilized in advance by the hypochlorous acid generated by electrolysis at the second electrolytic bath.
摘要:
In order to make a thermal utilization system operable in a stable and efficient condition regardless the variation of the operating heat source used, the system is provided with three hydrogen absorbing alloys having different pressure-temperature characteristics, wherein absorption/desorption of hydrogen gas is performed in two steps, i.e. the hydrogen gas desorbed from a first alloy is absorbed by a second alloy at a predetermined pressure, and is absorbed by the third alloy at a higher pressure after it is desorbed from the second alloy in a case when the temperature of the operating heat source is low, while the hydrogen gas desorbed from the first alloy is directly transported from the first alloy to the third alloy to be absorbed there when the temperature of the operating heat source is high. Alternatively, two hydrogen absorbing alloys having different pressure-temperature characteristics are used in such a way that, when the temperature of the operating heat source is low, the hydrogen gas desorbed from the first alloy is pumped to the second alloy to be absorbed there, but the gas is directly transported from the first alloy to the second alloy to be absorbed there when the temperature of the operating heat source is high.
摘要:
In a double-effect absorption chiller wherein the vapor of a refrigerant produced by a high temperature generator is supplied to a low temperature generator 12 for condensation, and the refrigerant liquified by condensation is supplied to a condenser 11, a pipe 7 for supplying the refrigerant liquified in the low temperature generator 12 to the condenser 11 therethrough is provided with an orifice 71 and a control valve 81 as pressure adjusting means. A control circuit 9 is connected to the control valve 81 to hold the valve 81 fully open during the period form the start-up of the chiller until the load is stabilized and thereafter gradually decrease the opening degree of the valve 81. Alternatively, a control valve 118 is mounted on the pipe 7 for controlling the pressure of the refrigerant so that the concentration of the absorbent (intermediate solution) in the high temperature generator because equal to the average of the concentration of the absorbent (strong solution) in the low temperature generator 12 and the concentration of the absorbent (weak solution) in an absorber.
摘要:
A water treatment apparatus includes a storage unit storing water to be treated including a pharmaceutical drug, an apply unit applying the water to be treated to the storage unit, an addition unit adding into the water to be treated metal salt generating halide ions when dissolved in the water to be treated, and an energizing unit applying a current to a pair of electrodes immersed in the water to be treated in the storage unit. The pharmacological activity of the pharmaceutical drug is eliminated or reduced by decomposing or altering at least a portion of the chemical structure of the pharmaceutical drug included in the water to be treated through electrolysis.
摘要:
A waste treatment system permitting treatment of organic wastes at low cost is provided. In the waste treatment system, organic wastes such as sewage, garbage and sludge are introduced into a methane fermentation bath for anaerobic fermentation. The methane gas produced in the bath is refined in a gas holder and then supplied to an electric generator, where the methane gas is used as a raw material for power generation. Digested liquid within the methane fermentation bath is supplied to an electrolytic bath via a flow adjustment bath and a fine screen. In the electrolytic bath, the digested liquid is subjected to electrolysis, by applying potentials to an electrode pair in the electrolytic bath based on the electric power obtained by the electric generator. By the electrolysis, nitrogen components including organic nitrogen and ammonia nitrogen, and BOD, SS and phosphorus components are removed from the digested liquid.
摘要:
The present invention provides a clothe drier, a washing machine and a washing machine with a clothes drying function, which are improved in the effects of cleaning, deodorizing and sterilizing clothes with ozone, and permit easy replacement of an ozone generation element or safe control of the ozone. An ozone generator (40) generates ozone by applying silent discharge to air introduced therein. The ozone is sucked into a drying air duct (15) by rotation of a blower (20) and a drum (3) and mixed in air heated by a heater (21), and the resulting mixture is supplied into the drum (3) through an inlet (17). Thus, the ozone is supplied to clothes to be dried, thereby effectively deodorizing and sterilizing the clothes. Since the ozone generator (40) is disposed away from the drying air duct (15), the ozone generation element can be easily replaced. After completion of drying, no ozone is present in the drum (3) due to an oxidation reaction, so that the user is unlikely to be influenced by the ozone when taking the clothes out of the drum (3).