摘要:
The present invention relates to a method for producing a modified propylene-based polymer containing modifying a propylene-based polymer by a radical initiator and an organic acid, a modified propylene-based polymer obtained by the method, and an adhesive composition containing the modified propylene-based polymer. The propylene-based polymer is a propylene homopolymer satisfying the conditions of (a) mmmm=20 to 60 mol %, (b) [rrrr/(1-mmmm)]≦0.1, (c) rmrm>2.5 mol %, (d) mmxrr/(mr)2≦2.0, and (e) the weight ratio (W25) of components eluted at 25° C. or lower in a temperature programmed chromatography is 20 to 100% by weight, or a propylene copolymer satisfying the condition of (h) the stereoregularity index (P) obtained by 13C-NMR measurement is 55 to 90 mol %.The modified propylene-based polymer of the invention can make a polyolefin, etc. more adhesive, stronger, or flexible, to be useful for a high-adhesive sealant or an polyolefin with increased compatibility to an inorganic filler, etc., particularly as a resin for a hot-melt adhesive.
摘要:
The present invention relates to a method for producing a modified propylene-based polymer containing modifying a propylene-based polymer by a radical initiator and an organic acid, a modified propylene-based polymer obtained by the method, and an adhesive composition containing the modified propylene-based polymer. The propylene-based polymer is a propylene homopolymer satisfying the conditions of (a) mmmm=20 to 60 mol %, (b) [rrrr/(1-mmmm)]≦0.1, (c) rmrm>2.5 mol %, (d) mmxrr/(mr)2=
摘要:
The present invention relates to a process for producing a buten-1-based polymer satisfying the following requirements (a), (b) and (c): (a) a crystalline resin having a melting point (Tm-D) of 0 to 100° C., the melting point being defined as a top of a peak observed on a highest-temperature side in a melting endothermic curve obtained by a differential scanning calorimeter (DSC) when a sample is held in a nitrogen atmosphere at −10° C. for 5 min and then heated at a temperature rise rate of 10° C./min; (b) a stereoregularity index represented by (mmmm)/(mmrr+rmmr) of 20 or less; and (c) a weight-average molecular weight (Mw) of 10,000 to 1,000,000 and a ratio (Mw/Mn) of weight-average molecular weight to number-average molecular weight of 4.0 or less; a modified buten-1-based polymer produced by modifying the buten-1-based polymer with a radical polymerization initiator and an organic acid; and an adhesive composition containing the modified buten-1-based polymer. The modified buten-1-based polymer of the present invention is capable of imparting a high adhesiveness, a high strength and a good softness to polyolefins, and providing sealants having a high adhesiveness, or polyolefins having an improved compatibility to inorganic fillers, etc., in particular, is useful as resins for hot-melt adhesives.
摘要:
The present invention relates to a process for producing a buten-1-based polymer satisfying the following requirements (a), (b) and (c): (a) a crystalline resin having a melting point (Tm-D) of 0 to 100° C., the melting point being defined as a top of a peak observed on a highest-temperature side in a melting endothermic curve obtained by a differential scanning calorimeter (DSC) when a sample is held in a nitrogen atmosphere at −10° C. for 5 min and then heated at a temperature rise rate of 10° C./min; (b) a stereoregularity index represented by (mmmm)/(mmrr+rmmr) of 20 or less; and (c) a weight-average molecular weight (Mw) of 10,000 to 1,000,000 and a ratio (Mw/Mn) of weight-average molecular weight to number-average molecular weight of 4.0 or less; a modified buten-1-based polymer produced by modifying the buten-1-based polymer with a radical polymerization initiator and an organic acid; and an adhesive composition containing the modified buten-1-based polymer. The modified buten-1-based polymer of the present invention is capable of imparting a high adhesiveness, a high strength and a good softness to polyolefins, and providing sealants having a high adhesiveness, or polyolefins having an improved compatibility to inorganic fillers, etc., in particular, is useful as resins for hot-melt adhesives.
摘要:
Provided are a highly-pure, terminal-unsaturated olefin polymer which is produced through homopolymerization or copolymerization of one or more α-olefins having from 3 to 28 carbon atoms, or copolymerization of at least one α-olefin having from 3 to 28 carbon atoms and ethylene, in the presence of a catalyst, and which satisfies the following (1) to (4); and a method of efficiently producing the olefin polymer having a high degree of terminal unsaturation degree and containing little catalyst residue. (1) The content of the transition metal derived from the catalyst is at most 10 ppm by mass, the content of aluminium is at most 300 ppm by mass, and the content of boron is at most 10 ppm by mass; (2) The polymer has from 0.5 to 1.0 vinylidene group/molecule as the terminal unsaturated group; (3) The polymer has an intrinsic viscosity [η], as measured in decalin at 135° C., of from 0.01 to 2.5 dl/g; (4) The polymer has a molecular weight distribution (Mw/Mn) of at most 4.
摘要:
A highly crystalline higher α-olefin polymer that is excellent in compatibility with a thermoplastic resin, particularly a polyolefin, compatibility with a lubricant oil, a fuel oil and wax, mixing property with an inorganic filler, and secondary working property, and a process for production thereof are provided. The highly crystalline higher α-olefin polymer is obtained by polymerizing a monomer containing 80% by mol or more of a higher α-olefin having from 22 to 40 carbon atoms, and satisfies the following items (1) and (2). (1) The melting point (Tm), which is observed, by using a differential scanning calorimeter (DSC), from a melting endothermic curve obtained by maintaining a specimen at 190° C. for 5 minutes under a nitrogen atmosphere, cooling the specimen to −10° C. at a rate of 5° C./min, maintaining at −10° C. for 5 minutes, and then elevating a temperature thereof to 190° C. at a rate of 10° C./min, is from 55 to 100° C. (2) Standards weight average molecular weight (Mw) measured by a gel permeation chromatography (GPC) based on polystyrene is from 1,000 to 5,000,000, and the molecular weight distribution (Mw/Mn) measured thereby is 5.0 or less.
摘要:
A highly crystalline higher α-olefin polymer that is excellent in compatibility with a thermoplastic resin, particularly a polyolefin, compatibility with a lubricant oil, a fuel oil and wax, mixing property with an inorganic filler, and secondary working property, and a process for production thereof are provided. The highly crystalline higher α-olefin polymer is obtained by polymerizing a monomer containing 80% by mol or more of a higher α-olefin having from 22 to 40 carbon atoms, and satisfies the following items (1) and (2). (1) The melting point (Tm), which is observed, by using a differential scanning calorimeter (DSC), from a melting endothermic curve obtained by maintaining a specimen at 190° C. for 5 minutes under a nitrogen atmosphere, cooling the specimen to −10° C. at a rate of 5° C./min, maintaining at −10° C. for 5 minutes, and then elevating a temperature thereof to 190° C. at a rate of 10° C./min, is from 55 to 100° C. (2) Standards weight average molecular weight (Mw) measured by a gel permeation chromatography (GPC) based on polystyrene is from 1,000 to 5,000,000, and the molecular weight distribution (Mw/Mn) measured thereby is 5.0 or less.
摘要:
An α-olefin polymer satisfying the following (1) to (4): (1) the average carbon-atom number of α-olefins constituting the polymer is 6.0 or more and 14 or less; (2) the molecular weight distribution (Mw/Mn)≦2.0; (3) 3000≦weight average molecular weight (Mw)≦600000; and (4) (Log10 Mp-Log10M1)−(Log10M2-Log10Mp)≧0.2; wherein, in a chart measured by gel permeation chromatography, M1 is the molecular weight at the starting point of the peak, Mp is the molecular weight at the peak top; and M2 is the molecular weight at the end point of the peak.
摘要:
The present invention provides a catalyst composition and a method for producing an olefin polymer using the catalyst composition. The catalyst composition is prepared by bringing (A) a transition metal compound, (B) a solid boron compound capable of forming an ion pair with the component (A), (C) an organometallic compound and (D) a compound represented by the following general formula (XIV) and/or the following general formula (XV) into contact with each other in a hydrocarbon solvent, and enables a high catalyst concentration. Z5R14R15 (XIV) Z6R14R15R16 (XV) [In the formulae, Z5 represents an oxygen atom, etc.; Z6 represents a nitrogen atom, etc.; R14 to R16 each independently represent an organic group, and at least one of those organic groups is an organic group having at least 3 carbon atoms, and R14 to R16 may bond to each other to form a ring.]
摘要:
Provided is an α-olefin polymer having an excellent balance between a molecular weight and a melting point, which is a polymer of one or more kinds of α-olefins having 20 to 40 carbon atoms, and which meets the following requirements (1) to (4): (1) the α-olefin polymer has a molecular weight distribution (Mw/Mn) determined from its weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene measured by a GPC method of 2 or less, and has an Mw of 5,000 or less; (2) measurement of a melting point (Tm) of the α-olefin polymer with DSC shows one melting peak, a melting heat absorption (AH) calculated from an area of the melting peak is 20 J/g or more, and the melting peak has a half value width of 10° C. or less; (3) when the Mw falls within a range of 1,000 to 5,000 and an average number of carbon atoms (Cn) of the α-olefins falls within a range of 20 to 40, the Mw, the Cn, and the Tm measured with the DSC satisfy the relationship, 0.0025×Mw+(Cn×3.3812−29.5)≦Tm≦0.0025×Mw+((Cn+1)×3.3812−29.5); and (4) a stereoregularity index [M2] derived from a chain of the α-olefins each having 20 to 40 carbon atoms is 20% by mol or more.