摘要:
A method of manufacturing a photomask includes determining an average value of dimensions of a pattern in a photomask. determining an in-plane uniformity of the dimensions, determining an exposure latitude on the basis of the average value and the in-plane uniformity. The exposure latitude depends on dimensional accuracy of the pattern. Judging if the photomask is defective or non-defective is made on the basis of whether or not the exposure latitude falls within a prescribed exposure latitude
摘要:
A method for evaluating a photo mask comprises preparing a photo mask including a unit drawing pattern, finding a dimensional variation relating to the photo mask, the dimensional variation including first and second dimensional variations, the first dimensional variation occurring due to a positional displacement and size mismatch of the unit drawing pattern in the photo mask and the second dimensional variation occurring due to etching and development relating to a manufacturing of the photo mask, estimating a deteriorated amount of an exposure latitude occurring due to the dimensional variation of the photo mask using the dimensional variation and a degree of influence of the dimensional variation for the exposure latitude, and judging quality of the photo mask by comparing the deteriorated amount of the exposure latitude and an allowable deteriorated amount of the exposure latitude.
摘要:
Disclosed is a method of manufacturing a photo mask comprising preparing mask data for a mask pattern to be formed on a mask substrate, calculating edge moving sensitivity with respect to each of patterns included in the mask pattern using the mask data, the edge moving sensitivity corresponding to a difference between a proper exposure dose and an exposure dose to be set when a pattern edge varies, determining a monitor portion of the mask pattern, based on the calculated edge moving sensitivity, actually forming the mask pattern on the mask substrate, acquiring a dimension of a pattern included in that portion of the mask pattern formed on the mask substrate which corresponds to the monitor portion, determining evaluation value for the mask pattern formed on the mask substrate, based on the acquired dimension, and determining whether the evaluation value satisfies predetermined conditions.
摘要:
A lithography simulation method includes: taking in design data of a pattern to be formed on a substrate and mask data to prepare a mask pattern used in forming a latent image of the pattern on the substrate by transmission of an energy ray; obtaining the latent image of the pattern by calculation of an intensity of the energy ray; locally changing, at least in a portion corresponding to a pattern to be interested, a relative position in a direction of the intensity of the energy ray between a latent image curve and a reference intensity line in accordance with a distance between the pattern to be interested and a pattern of a neighboring region, the latent image curve being an intensity distribution curve of the energy ray constituting the latent image, the reference intensity line being defined to specify a position of an edge of the pattern to be interested; and calculating a distance between intersections of a portion of the latent image curve corresponding to the pattern to be interested and the reference intensity line in the changed relative position to define an interested line width of the pattern to be interested.
摘要:
A lithography simulation method includes: taking in design data of a pattern to be formed on a substrate and mask data to prepare a mask pattern used in forming a latent image of the pattern on the substrate by transmission of an energy ray; obtaining the latent image of the pattern by calculation of an intensity of the energy ray; locally changing, at least in a portion corresponding to a pattern to be interested, a relative position in a direction of the intensity of the energy ray between a latent image curve and a reference intensity line in accordance with a distance between the pattern to be interested and a pattern of a neighboring region, the latent image curve being an intensity distribution curve of the energy ray constituting the latent image, the reference intensity line being defined to specify a position of an edge of the pattern to be interested; and calculating a distance between intersections of a portion of the latent image curve corresponding to the pattern to be interested and the reference intensity line in the changed relative position to define an interested line width of the pattern to be interested.
摘要:
A lithography simulation method includes: taking in design data of a pattern to be formed on a substrate and mask data to prepare a mask pattern used in forming a latent image of the pattern on the substrate by transmission of an energy ray; obtaining the latent image of the pattern by calculation of an intensity of the energy ray; locally changing, at least in a portion corresponding to a pattern of interest, a relative position in a direction of the intensity of the energy ray between a latent image curve and a reference intensity line in accordance with a distance between the pattern of interest and a pattern of a neighboring region , the latent image curve being an intensity distribution curve of the energy ray constituting the latent image, the reference intensity line being defined to specify a position of an edge of the pattern of interest; and calculating a distance between intersections of a portion of the latent image curve corresponding to the pattern of interest and the reference intensity line in the changed relative position to define a line width of interest of the pattern of interest.
摘要:
According to a sub-resolution assist feature arranging method in embodiments, it is selected which of a rule base and a model base is set for which pattern region on pattern data corresponding to a main pattern as a type of the method of arranging the sub-resolution assist feature for improving resolution of the main pattern formed on a substrate. Then, the sub-resolution assist feature by the rule base is arranged in a pattern region set as the rule base and the sub-resolution assist feature by the model base is arranged in a pattern region set as the model base.
摘要:
A lithography simulation method includes: taking in design data of a pattern to be formed on a substrate and mask data to prepare a mask pattern used in forming a latent image of the pattern on the substrate by transmission of an energy ray; obtaining the latent image of the pattern by calculation of an intensity of the energy ray; locally changing, at least in a portion corresponding to a pattern to be interested, a relative position in a direction of the intensity of the energy ray between a latent image curve and a reference intensity line in accordance with a distance between the pattern to be interested and a pattern of a neighboring region, the latent image curve being an intensity distribution curve of the energy ray constituting the latent image, the reference intensity line being defined to specify a position of an edge of the pattern to be interested; and calculating a distance between intersections of a portion of the latent image curve corresponding to the pattern to be interested and the reference intensity line in the changed relative position to define an interested line width of the pattern to be interested.
摘要:
According to a sub-resolution assist feature arranging method in embodiments, it is selected which of a rule base and a model base is set for which pattern region on pattern data corresponding to a main pattern as a type of the method of arranging the sub-resolution assist feature for improving resolution of the main pattern formed on a substrate. Then, the sub-resolution assist feature by the rule base is arranged in a pattern region set as the rule base and the sub-resolution assist feature by the model base is arranged in a pattern region set as the model base.
摘要:
According to a aspect of the present invention, there is provided a critical pattern extracting method which extracts critical patterns from mask data for manufacturing a photomask used in a lithography step, comprising at least: extracting mask data of a peripheral region within a predetermined range from an interested portion to be decided in the mask data; defining portions constituting the peripheral region as reference portions and calculating process generation amounts generated from the each reference portion in the lithography step by simulation; performing a predetermined arithmetic operation by using the process generation amounts and distances between the interested portion and the each reference portion; performing multiple integral of an arithmetic operation value obtained by the predetermined arithmetic operation in the peripheral region or an arithmetic operation equivalent to the multiple integral to calculate a process affecter amount; and comparing the process affecter amount with a predetermined threshold value.