摘要:
A refrigerating system of a gas injection type having first and second stage pressure reducers 3 and 5, between which a separator 4 is arranged, and a conduit 10 for introduction of a gaseous refrigerant separated at a separator 4 into a compressor 1. A by-pass conduit 11 is connected to a refrigerating system so that the second stage pressure reducer 5 is by-passed. An ON-OFF control valve 12 is arranged in the by-pass conduit. The control valve 12 is switched to an opened condition during a low load of the air conditioning system, which makes a pressure difference low between the outlet of the separator 4 and an evaporator 6, which prevent gas injection from being executed. A control valve can also be arranged in a gas injection conduit 10, which controls an amount of the gas injection in accordance with a ratio (compression ratio) of an outlet pressure to an intake pressure in such a manner a reduction of a gas injection amount is obtained when a value of the compression ratio is lower than a predetermined value, thereby preventing over-compression from occurring.
摘要:
When heating the passenger compartment of a vehicle during cold weather, an air switching outlet is operated to allow the entry of outside air with an interior blower being operated to facilitate the entry of the outside air. A condenser door is operated to close an air passage of the condenser and a bypass passage is opened so that outside air flows to the passenger compartment of the vehicle while bypassing the condenser. Further, only a defogging outlet is opened and the incoming air is blown out from this defogging outlet toward the windshield of the vehicle so that a low humidity air curtain is formed proximate to the inner surface of the windshield. After completing the warm-up of the heat pump cycle, the condenser door is switched such that the air blown in by the blower passes the interior condenser to start the heating of the passenger compartment.
摘要:
In a refrigerant cycle system, refrigerant compressed in a first compressor is cooled and condensed in a radiator, and refrigerant from the radiator branches into main-flow refrigerant and supplementary-flow refrigerant. The main-flow refrigerant is decompressed in an expansion unit while expansion energy of the main-flow refrigerant is converted to mechanical energy. Thus, the enthalpy of the main-flow refrigerant is reduced along an isentropic curve. Therefore, even when the pressure within the evaporator increases, refrigerating effect is prevented from being greatly reduced in the refrigerant cycle system. Further, refrigerant flowing into the radiator is compressed using the converted mechanical energy. Thus, coefficient of performance of the refrigerant cycle system is improved.
摘要:
In a refrigerant cycle system, refrigerant compressed in a first compressor is cooled and condensed in a radiator, and refrigerant from the radiator branches into main-flow refrigerant and supplementary-flow refrigerant. The main-flow refrigerant is decompressed in an expansion unit while expansion energy of the main-flow refrigerant is converted to mechanical energy. Thus, the enthalpy of the main-flow refrigerant is reduced along an isentropic curve. Therefore, even when the pressure within the evaporator increases, refrigerating effect is prevented from being greatly reduced in the refrigerant cycle system. Further, refrigerant flowing into the radiator is compressed using the converted mechanical energy. Thus, coefficient of performance of the refrigerant cycle system is improved.
摘要:
A refrigerating system of vapor compression type operating at a super critical area, while obtaining an increased efficiency. The refrigerating system includes a pressure control means for controlling the temperature and the pressure at the outlet of a heat emitter. The pressure control valve responds to a pressure difference between the inlet pressure of the refrigerant to the pressure control valve and the pressure in an outwardly sealed chamber in which the refrigerant is filled such that, with respect to the volume of the chamber under closed condition of the pressure control valve, a density of the refrigerant is in a range between a density of a saturated liquid at a temperature of 0.degree. C. and a density at the critical point of the refrigerant. As a result, the pressure and the temperature at the outlet of the heat emitter is controlled substantially along the optimum control line .eta.max, resulting in an effective execution of a refrigerating cycle at the critical area.
摘要:
A gas-liquid separator for a heat pump type air conditioning system using a gas-injection cycle, which system can switch its mode of operation between heating and cooling modes, includes a reservoir for receiving refrigerant in a gas-liquid two-phase flow, an exit port which opens at a upper portion of the reservoir and allows a refrigerant gas to flow out of the reservoir, first and second ports which are provided at a upper part within the reservoir above the level of a refrigerant liquid and allows the refrigerant to flow into and out of the reservoir. A first refrigerant path for allowing the first port to fluidly communicate with the refrigerant liquid in the reservoir, a second refrigerant path for allowing the first port to fluidly communicate with the refrigerant gas above the level of the refrigerant liquid in the reservoir, a third refrigerant path for allowing the second port to fluidly communicate with the refrigerant liquid in the reservoir, and a fourth refrigerant path for allowing the second port to fluidly communicate with the refrigerant gas above the level of the refrigerant liquid in the reservoir are provided within the reservoir. The second and third refrigerant path open when a refrigerant enters the reservoir through the first port, and the first and fourth refrigerant path open when a refrigerant enters the reservoir through the second port.
摘要:
According to the present invention, in a gas injection type heat pump apparatus, the high-pressure side pressure of refrigeration cycle is detected in a heating operation, and an upper limit value of an amount of air passing through an inside heat exchanger is determined based on the detection value. The upper limit value and a set air amount set by an air amount switching lever are compared. When the set air amount is larger than the upper limit value, the amount of the air passing through the inside heat exchanger is restricted within the upper limit value. In this way, the high-pressure side pressure increases, and an intermediate pressure in a gas-liquid separator also increases. Therefore, the gas injection amount can be increased, and a heating capacity can be effectively improved.
摘要:
In an ejector cycle having an ejector, a decompression amount of refrigerant between a gas-liquid separator and an evaporator is adjusted by a differential pressure control valve, so that a pressure increasing amount in a pressure increasing portion of the ejector is controlled to be equal to or lower than a predetermined amount. Therefore, a suction pressure of refrigerant to be sucked to the compressor can be restricted from being excessively increased in accordance with the increase of the pressure increasing amount in the ejector, and it can prevent heat radiating capacity of a radiator from being decreased. Thus, a sufficient cooling capacity can be always obtained in the ejector cycle.
摘要:
The supercritical refrigerating circuit has a first pressure reducing valve for reducing pressure of refrigerant flows into a first evaporator and a second pressure reducing valve for reducing pressure of refrigerant flows into a second evaporator. The first pressure reducing valve further controls refrigerant pressure at an outlet of a gas cooler. Accordingly, the supercritical refrigerant circuit is controlled without increasing the number of the pressure reducing valve.
摘要:
In an ejector, a nozzle includes a nozzle tapered section having an inner passage with a radial dimension reduced toward a nozzle outlet port, and a needle having a needle tapered section disposed in the inner passage. The needle tapered section has a cross sectional area reduced toward a downstream end of the needle, and the downstream end of the needle is positioned at a downstream side with respect to the nozzle outlet port. In addition, the nozzle tapered section has a taper angle (φ1) which is equal to or greater than a taper angle (φ2) of the needle tapered section. Therefore, a boundary face on the outside of a nozzle jet flow becomes in a balanced natural shape, and is controlled in accordance with an operating condition. Thus, the ejector cycle can be operated while keeping high efficiency, regardless of the thermal load of the ejector cycle.