摘要:
Provided is a method for manufacturing, in a simple process, a magnetic recording medium having a distinct magnetic recording pattern formed thereon. A method for manufacturing a magnetic recording medium having a magnetically-separated magnetic recording pattern MP, the method at least including; a first step of forming a first magnetic layer 11 on a non-magnetic substrate 10; a second step of forming a resist layer 12 on the first magnetic layer 11, the resist layer 12 being patterned in correspondence with the magnetic recording pattern MP; a third step of forming a second magnetic layer 13 so as to cover a surface of the first magnetic layer 11 having the resist layer 12 formed thereon; a fourth step of removing the resist layer 12 together with the second magnetic layer 13 formed thereon; and a fifth step of partially removing the first magnetic layer 11 or partially modifying magnetic property of the first magnetic layer 11.
摘要:
A magnetic recording medium which does not easily cause a material containing Fe or Co to corrode is disclosed. The method for manufacturing a magnetic recording medium 122 includes a process of forming a magnetic layer 30 on a non-magnetic substrate 10, a process of forming a recessed area 65 in the magnetic layer 30, a process of forming a corrosion-resistant film 60 to cover an exposure surface 65c of the recessed area 65, and a process of forming a magnetic recording pattern made of the magnetically separated magnetic layer 30 by forming a non-magnetic layer 40 to fill in the recessed area 65.
摘要:
A magnetic recording medium which does not easily cause a material containing Fe or Co to corrode is disclosed. The method for manufacturing a magnetic recording medium 122 includes a process of forming a magnetic layer 30 on a non-magnetic substrate 10, a process of forming a recessed area 65 in the magnetic layer 30, a process of forming a corrosion-resistant film 60 to cover an exposure surface 65c of the recessed area 65, and a process of forming a magnetic recording pattern made of the magnetically separated magnetic layer 30 by forming a non-magnetic layer 40 to fill in the recessed area 65.
摘要:
There is provided a method of producing a magnetic recording medium having a magnetically separated magnetic recording pattern formed therein, without oxidizing or halogenating a surface of a magnetic layer, and also without contaminating the surface with dust and without complicating a production process,the method of producing a magnetic recording medium characterized by including, in this order: a step of forming a magnetic layer (2) on top of a non-magnetic substrate (1); a step of forming a mask layer (3) for forming a magnetic recording pattern on top of the magnetic layer (2); and a step of irradiating an ion beam (10) onto regions in the magnetic layer (2) which are not covered by the mask layer (3), removing an upper layer portion of the magnetic layer (2) at that regions (7), and reforming magnetic properties of a lower layer portion (8), wherein two or more types of positive ions having different masses are used for the ion beam (10), and an ion gun for forming the ion beam has a positive electrode that forces out positive ions from an ion source towards a substrate side, and a negative electrode that accelerates the positive ions towards the substrate side.
摘要:
There is provided a method for manufacturing a magnetic recording medium which can easily produce a magnetic recording medium, the magnetic recording medium having a plurality of magnetically separated recording layers suitable as the recording layers in a discrete track medium or patterned medium, and also having excellent surface flatness, in which spaces between the adjacent recording layers are filled in with a non-magnetic material.Such a method for manufacturing a magnetic recording medium is a method for manufacturing a magnetic recording medium (10) including: a step for forming a magnetic layer on top of a non-magnetic substrate (1), and then forming a resist pattern constituted of a non-magnetic material on top of the magnetic layer; a step for forming a concave section (4a), which is to become a separation layer (5), and a plurality of recording layers (4) that are magnetically separated in plan view by the concave section (4a) by removing the magnetic layer that is exposed from the resist pattern; and a step for forming the separation layer (5) by melting the resist pattern to prepare a melted resist and filling in the concave section (4a) with the melted resist, followed by curing of the melted resist.
摘要:
The present invention provides a magnetic recording medium that has sufficient recording/reproducing characteristics and good write characteristics and can correspond to high recording density, and a method of manufacturing the same. A magnetic recording medium 1 includes a plurality of magnetic recording patterns 2 that is magnetically separated from each other. Each of the magnetic recording patterns 2 includes a low-coercivity region 2a and a high-coercivity region 2b having a coercivity higher than the low-coercivity region, and the high-coercivity region 2b is arranged at the center of the low-coercivity region 2a in a plan view.
摘要:
The present invention provides a magnetic recording medium that has sufficient recording/reproducing characteristics and good write characteristics and can correspond to high recording density, and a method of manufacturing the same. A magnetic recording medium 1 includes a plurality of magnetic recording patterns 2 that is magnetically separated from each other. Each of the magnetic recording patterns 2 includes a low-coercivity region 2a and a high-coercivity region 2b having a coercivity higher than the low-coercivity region, and the high-coercivity region 2b is arranged at the center of the low-coercivity region 2a in a plan view.
摘要:
A glass roll reliably prevents a glass film from breaking from an end surface of the glass film as an origin of breakage. The glass roll is formed by winding the glass film into a roll while superposing the glass film on a protective sheet. The glass film is formed by an overflow downdraw method to have a thickness of 1 μm or more and 200 μm or less, and has each end surface in a width direction formed as a cut surface cut by laser splitting.
摘要:
Provided is a glass roll utilizing a flanged roll core, and reliably inhibiting a glass film from breaking from an end portion in a width direction thereof as an origin of breakage. A glass roll (1) is formed by winding a glass film (4) and a cushion sheet (5), under a state of being superposed, around a roll core (3) including a flange (2) at each end portion thereof, in which an end portion in a width direction of the glass film (4) is separated from the flange (2) on each side in the width direction of the glass film (4), and the cushion sheet (5) is extended beyond the end portion in the width direction of the glass film (4) to the flange (2) side, to thereby form an extension portion (5a).
摘要:
A reflective mask blank has a substrate (11) on which a reflective layer (12) for reflecting exposure light in a short-wavelength region including an extreme ultraviolet region and an absorber layer (16) for absorbing the exposure light are successively formed. The absorber layer (16) has an at least two-layer structure including as a lower layer an exposure light absorbing layer (14) formed by an absorber for the exposure light in the short-wavelength region including the extreme ultraviolet region and as an upper layer a low-reflectivity layer (15) formed by an absorber for inspection light used in inspection of a mask pattern. The upper layer is made of a material containing tantalum (Ta), boron (B), and nitrogen (N). The content of B is 5 at % to 30 at %. The ratio of Ta and N (Ta:N) falls within a range of 8:1 to 2:7. Alternatively, the reflective mask blank has a substrate on which a multilayer reflective film and an absorber layer are successively formed. In this case, the absorber layer is made of a material containing tantalum (Ta), boron (B), and nitrogen (N). The content of B is 5 at % to 25 at %. The ratio of Ta and N (Ta:N) falls within a range of 8:1 to 2:7.