摘要:
An LCD panel will rotate based on an external control signal by a prescribed angle such portion of light flux, that enters an objective lens, corresponding to a predetermined incident point and, at the same time, will change by a prescribed length an optical path of this portion of optical flux whose aberrations are in excess of a prescribed standard value. It is thus possible to compensate the wave-front aberrations due to the differences in the effective optical-path length and also to control the effective numerical aperture of the objective lens by utilizing linearly polarized light as the light to be emitted from the laser beam source. It is also possible to compensate the aberrations due the differences in the substrate thickness of the optical recording medium and those due to a tilt of the optical recording medium.
摘要:
An aberration correcting optical unit includes an optical element for causing a phase change to light passing therethrough by the application of voltage and electrode layers for applying voltages to the optical element. The optical element is sandwiched between the electrode layers. At least one of the electrode layers includes a plurality of electrodes which are electrically isolated from one another. The plurality of electrodes are disposed such that an electric field generated in a portion of the optical element corresponding to a portion between the plurality of electrodes is larger than a predetermined intensity when a predetermined voltage is applied to the optical element.
摘要:
An aberration correcting optical unit includes an optical element for causing a phase change to light passing therethrough by the application of voltage and electrode layers for applying voltages to the optical element. The optical element is sandwiched between the electrode layers. At least one of the electrode layers includes a plurality of electrodes which are electrically isolated from one another. The plurality of electrodes are disposed such that an electric field generated in a portion of the optical element corresponding to a portion between the plurality of electrodes is larger than a predetermined intensity when a predetermined voltage is applied to the optical element.
摘要:
An aberration correcting unit includes: a first element having a liquid crystal sandwiched between first electrode layers, the first element having a first predetermined orientation direction and providing a light with a phase change by applying a voltage; a second element having a liquid crystal sandwiched between the second electrode layers, the second element having a second predetermined orientation direction that is substantially perpendicular to the first orientation direction and providing a light with a phase change by applying a voltage; and a polarization-direction changing element which is arranged between a light source of the light beam and the first and second elements to change a polarization direction of the light beam.
摘要:
An apparatus and a method are provided for compensating an aberration occurring in a reflected light beam from a recording medium. The apparatus includes a liquid crystal unit including a first electrode layer having divisional electrodes and a second electrode layer, and a liquid crystal element which provides a light beam with a phase change when an electric field is applied; a detector for receiving the reflected light beam through the liquid crystal unit to generate a detection signal; a voltage generator for generating voltages to be applied to the divisional electrodes; and a controller for performing aberration compensation control by changing the applied voltages to each of the divisional electrodes with reference to an applied reference voltage to a predetermined divisional electrode. The controller determines the applied reference voltage based on an amplitude change of the detection signal when the applied voltages to the divisional electrodes are changed.
摘要:
An aberration correction device for correcting aberration produced in a light beam, which includes: a first electrode layer and a second electrode layer being opposed to each other; and a liquid crystal disposed between the first electrode layer and the second electrode layer for producing a change in phase in a light beam passing therethrough in accordance with voltages applied to the first electrode layer and the second electrode layer. The first electrode layer is divided into a plurality of phase adjustment portions which are electrically isolated each other. Each of the plurality of phase adjustment portions includes a pair of electrodes arranged in such a form that produces an electric field distribution for correcting the aberration by applying predetermined voltages thereto.
摘要:
This invention provides a photosensitive composition, which can form a smooth photosensitive layer, has good storage stability, and exhibits high sensitivity when a blue-violet laser exposure system is used, a photosensitive film, a method for forming a permanent pattern using the photosensitive composition, and a printed board with a permanent pattern formed thereon by the method for forming a permanent pattern.
摘要:
The present invention aims to provide a photosensitive transfer material which allows for preventing light fog under safelight even with a highly sensitive photosensitive transfer layer, and is particularly preferably used in producing printed circuit boards and color filters for liquid crystal displays (LCDs).For this end, the present invention provides a photosensitive layer having a support, and a cushion layer, an oxygen insulation layer, and a photosensitive layer formed on the support, at least any one of the cushion layer and the oxygen insulation layer has light absorbing properties of which absorbance at a wavelength ranging from 500 nm to 600 nm is 1 or more and absorbance at a wavelength ranging from 350 nm to 450 nm is 0.3 or less.In the photosensitive transfer material, at least any one of the oxygen insulation layer and the cushion layer contains a dye.
摘要:
A thermosensitive recording material of the present invention has a thermosensitive color developing layer on a support, and the thermosensitive color developing layer contains at least an electron-donating colorless dye and 4-hydroxybenzenesulfone anilide as an electron-accepting compound. The thermosensitive recording material of the invention meets any one of the following conditions: the thermosensitive recording surface of the thermosensitive recording material has an Oken smoothness of at least 300 seconds; 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)-butane and/or 1,1,3-tris(2-methyl-4-hydroxy-5-cyclohexyl-phenyl)butane is contained as an image stabilizer; at least one selected from 2-anilino-3-methyl-6-di-n-butylaminofluorane and 2-anilino-3-methyl-6-di-n-amylaminofluorane is contained as the electron-donating colorless dye; a sensitizer and 2-anilino-3-methyl-6-(N-ethyl-N-p-benzyl)aminofluorane as the electron-donating colorless dye are contained; and the image stabilizer and at least one selected from 2-anilino-3-methyl-6-di-n-butylaminofluorane, 2-anilino-3-methyl-6-di-n-amylaminofluorane, and 2-anilino-3-methyl-6-(N-ethyl-N-p-benzyl)aminofluorane as the electron-donating colorless dye are contained.
摘要:
(A) The invention discloses a thermosensitive recording material comprising: a support; and a thermosensitive recording layer formed on the support, the thermosensitive recording layer containing an electron-donating colorless dye and an electron-accepting compound which develops color upon a reaction with the electron-donating colorless dye, wherein the thermosensitive recording material satisfies at least one of the following conditions (1) to (3). (1) an image density when thermal printing is performed from a side, of the support, having the thermosensitive recording layer with printing energy of 15.2 mJ/mm2 is 1.20 or more, and the thermosensitive recording material is used for a recording device having a printing speed of 10 cm/sec or more; (2) the thermosensitive recording material contains a sensitizer comprising at least one compound selected from the group consisting of 2-benzyloxynaphthalene, dimethylbenzyloxalate, m-terphenyl, ethyleneglycol tolyl ether, p-benzyl biphenyl, 1,2-diphenoxymethyl benzene, diphenyl sulfone and 1,2-diphenoxy ethane, and the image density after the thermosensitive recording material is brought into contact with a heat source of 70° C. for 5 seconds is 0.15 or less; (3) the electron-accepting compound is a compound represented by the following Formula (1) R1-Ph-SO2R2 Formula (1) wherein R1 represents a hydroxyl group or an alkyl group, R2 represents -Ph, —NH-Ph, -Ph-OR3 or —NH—CO—NH-Ph, R3 represents an alkyl group, Ph represents a phenyl group and may be substituted with a substituent containing —SO2R2, and a volume-averaged grain size of the electron-donating colorless dye and electron-accepting compound is in a range of 0.5 to 1.0 μm.