摘要:
An electrode plate suitable for use in an electro-optical device, such as a liquid crystal device, is formed by successively disposing on a substrate a first layer of a transparent conductor film, a second layer of molybdenum or a molybdenum alloy, a third layer of aluminum or an aluminum alloy, and a fourth layer of molybdenum or a molybdenum alloy. The laminate electrode structure is patterned by a photolithographic process, followed by removal of the photoresist with a peeling liquid, during which the fourth molybdenum layer functions as a protective film for the third al layer against the peeling liquid to prevent the formation of electrode defects.
摘要:
A liquid crystal device if formed by disposing a liquid crystal between a pair of oppositely disposed electrodes, at least one of which has a laminated structure including a first layer of ITO (indium tin oxide), a second layer of Mo (molybdenum) or its alloy, and a third layer of Al (aluminum) or its alloy, disposed in the order named. Because of the Mo-based second layer, the ITO layer is protected during development of a photoresist layer formed on the Al-based third layer even if some pinholes are present in the Al-based third layer. The Mo-based second layer can be etched by an etchant for the Al-based third layer so that the entire process is not complicated because of the provision of the Mo-based second layer.
摘要:
A device plate is provided which comprises a transparent conductive film comprised of indium oxide, and laminated thereon a metallic conductive film comprised of at least one metal selected from the group consisting of molybdenum, titanium, chromium, tantalum, tungsten and nickel.
摘要:
A liquid crystal device comprises two electrode plates and a liquid crystal such as a ferro-electric smectic liquid crystal disposed between the electrode plates. At least one electrode plate is provided with a uniaxial orientation treatment. At least one electrode plate comprises a substrate and transparent stripe electrodes and metal electrodes each disposed along the length of and electrically connected with a transparent stripe electrode formed on a substrate. Each metal electrode is disposed along and forms a protrusion sticking out of at least one longitudinal edge of a transparent stripe electrode.
摘要:
A liquid crystal device is formed by disposing a liquid crystal between a plurality of elongated first display electrodes on a first substrate and a plurality of elongated second display electrodes on a second substrate so as to form a pixel at each intersection of the first and second display electrodes. The spacings between the pixels are masked by a metal oxide light-shielding mask disposed in lamination with the first display electrodes with an intermediate insulating film. The metal oxide light-shielding mask is separated into a plurality of discrete metal oxide masking films each allotted to a pixel at parts in alignment with at least one of first and second metal lead electrodes disposed along and in electrical contact with the first and second display electrodes. The structure is effective for preventing leakage light through a spacing between pixels without causing a short circuit between pixels, liquid crystal alignment disorder or peeling-off of the insulating film.
摘要:
A liquid crystal device is formed by disposing a liquid crystal between a pair of oppositely disposed electrodes, at least one of which has a laminated structure including a first layer of ITO (indium tin oxide), a second layer of Mo (molybdenum) or its alloy, and a third layer of Al (aluminum) or its alloy, disposed in the order named. Because of the Mo-based second layer, the ITO layer is protected during development of a photoresist layer formed on the Al-based third layer even if some pinholes are present in the Al-based third layer. The Mo-based second layer can be etched by an etchant for the Al-based third layer so that the entire process is not complicated because of the provision of the Mo-based second layer.
摘要:
A matrix-type liquid crystal device is formed so as to have a matrix of pixels defined by and isolated from each other by an outside-pixel region. The liquid crystal in the outside-pixel region in placed in an alignment state, typically a homeotropic state or one close thereto, which is different from an alignment state, typically a homogeneous uniform alignment state, at the pixel region. As a result, the liquid crystal device is provided with improved display qualities due to suppression of irregularities at the outside-pixel region and/or a local pressure distribution.
摘要:
A liquid crystal device comprises two electrode plates and a liquid crystal such as a ferroelectric smectic liquid crystal disposed between the electrode plates. At least one electrode plate is provided with a uniaxial orientation treatment. At least one electrode plate comprises a substrate and transparent stripe electrodes and metal electrodes each disposed along the length of and electrically connected with a transparent stripe electrode formed on a substrate. Each metal electrode is disposed along and forms a protrusion sticking out of at least one longitudinal edge of a transparent stripe electrode.
摘要:
In a transfer printing apparatus having a blade-form ink extender and an ink extension member for extending an ink thereon in association with the ink extender, there is provided a means for removing an excess of the ink from the ink extender and/or and the ink extension member. The transfer printing apparatus is suitably used for forming a film of an organic polymer or an inorganic oxide in a process for production of a liquid crystal device.
摘要:
An electrode plate structure for a liquid crystal color display is produced by forming a color filter layer of a photosensitive polyamide resin containing a colorant dispersed therein; disposing a protective layer of a photosensitive polyamide resin on the color filter layer; forming an ITO (indium-tin-oxide) film on the protective layer, preferably at an elevated temperature of at most 270.degree. C.; post-annealing the ITO film at a temperature of 200.degree.-300.degree. C. for improving the crystallinity of the ITO film suitable for etching; and selectively etching the ITO film patternwise with an etchant of hydroiodic acid or a hydroiodic acid-ferric chloride aqueous solution mixture to leave an ITO electrode pattern.