摘要:
A process and apparatus for gas phase polymerization of olefins in a fluidized bed reactor are disclosed. The process and apparatus employ a vertically oriented fines ejector in order to reduce fouling and reactor downtime.
摘要:
A process and apparatus for gas phase polymerization of olefins in a fluidized bed reactor are disclosed. The process and apparatus employ a vertically oriented fines ejector in order to reduce fouling and reactor downtime.
摘要:
A process and apparatus for gas phase polymerization of olefins in a fluidized bed reactor are disclosed. The process and apparatus employ a vertically oriented fines ejector in order to reduce fouling and reactor downtime.
摘要:
A process and apparatus for gas phase polymerization of olefins in a fluidized bed reactor are disclosed. The process and apparatus employ a vertically oriented fines ejector in order to reduce fouling and reactor downtime.
摘要:
A high-pressure separator with improved efficiency is provided. The separator comprises a centrifugal separator located inside of a gravity separator. The centrifugal separator has an enclosed upper portion and desirably comprises a single cylinder. The high-pressure separator is particularly suitable for use in the production of low-density polyethylene under high pressure.
摘要:
A high-pressure separator with improved efficiency is provided. The separator comprises a centrifugal separator located inside of a gravity separator. The centrifugal separator has an enclosed upper portion and desirably comprises a single cylinder. The high-pressure separator is particularly suitable for use in the production of low-density polyethylene under high pressure.
摘要:
A gas distribution plate for fluidized-bed, olefin polymerization reactors is provided. In addition to holes for distributing a fluidizing gas, the plate comprises a plurality of hollow projections for introducing a fluid into the fluidized-bed reactor. The hollow projections, which can be tubes or pipes, extend above the plate towards the fluidized bed and serve a number of purposes. The projections can break apart or penetrate fallen polymer agglomerates or sheets. They can be equipped with flow or pressure sensors to detect a decrease in flow rate or an increase in pressure drop across the projections, which is an indicator of the presence and/or size of fallen polymer agglomerates or sheets. The projections can also break apart the agglomerates or sheets into smaller pieces by delivering blasts of fluid directly into the agglomerates or sheets. The projections can also be used to inject a kill agent into the fallen agglomerates or sheets, or collapsed portions of the bed, to speed up penetration of the kill agent into the agglomerates, sheets, or collapsed portions.
摘要:
A gas distribution plate for fluidized-bed, olefin polymerization reactors is provided. In addition to holes for distributing a fluidizing gas, the plate comprises a plurality of hollow projections for introducing a fluid into the fluidized-bed reactor. The hollow projections, which can be tubes or pipes, extend above the plate towards the fluidized bed and serve a number of purposes. The projections can break apart or penetrate fallen polymer agglomerates or sheets. They can be equipped with flow or pressure sensors to detect a decrease in flow rate or an increase in pressure drop across the projections, which is an indicator of the presence and/or size of fallen polymer agglomerates or sheets. The projections can also break apart the agglomerates or sheets into smaller pieces by delivering blasts of fluid directly into the agglomerates or sheets. The projections can also be used to inject a kill agent into the fallen agglomerates or sheets, or collapsed portions of the bed, to speed up penetration of the kill agent into the agglomerates, sheets, or collapsed portions.
摘要:
A method of preventing or inhibiting fouling in an olefin polymerization fluidized-bed reactor is provided. The method involves varying the fluidization velocity inside the reactor over time about a set point.
摘要:
A method for preventing or inhibiting fouling in a gas-phase polyolefin polymerization process. The method includes maintaining the inside surface temperature of the process equipment below the dew point temperature of the gas mixture passing through the equipment.