Abstract:
A light emitting device includes an organic electroluminescent material having a glass transition temperature substantially at or below an intended normal operation temperature of the device. A method for regenerating an organic light emitting device by heating an electroluminescent layer to a temperature substantially equal to or above its glass transition temperature is also described. This provides a means and method for regenerating a degraded emitter in use.
Abstract:
Composition for use in an organic light-emitting device, the composition having a fluorescent light-emitting material and a triplet-accepting material subject to the following energetic scheme: 2×T1A>S1A>S1E, or T1A+T1E>S1A>S1E in which: T1A represents a triplet excited state energy level of the triplet-accepting material; TIE represents a triplet excited state energy level of the light-emitting material; S1A represents a singlet excited state energy level of the triplet-accepting material; and S1E represents a singlet excited state energy level of the light-emitting material; and in which light emitted by the composition upon excitation includes delayed fluorescence.
Abstract:
An organic light emissive device comprising: a first electrode; a second electrode; and an organic light emissive region between the first and second electrodes comprising an organic light emissive material which has a peak emission wavelength, wherein at least one of the electrodes is transparent and comprises a composite of a charge injecting metal and another material which is codepositable with the charge injecting metal, the other material having a different refractive index to that of the charge injecting metal and wherein the other material has a lower degree of quenching at the peak emission wavelength than the charge injecting metal whereby quenching of excitons by the at least one electrode is reduced, the charge injecting metal comprising either a low work function metal having a work function of no more than 3.5 eV or a high work function metal having a work function of no less than 4.5 eV.
Abstract:
A method of forming an optical device comprising the steps of: providing a substrate comprising a first electrode capable of injecting or accepting charge carriers of a first type; forming over the first electrode a first layer that is at least partially insoluble in a solvent by depositing a first semiconducting material that is free of cross-linkable vinyl or ethynyl groups and is, at the time of deposition, soluble in the solvent; forming a second layer in contact with the first layer and comprising a second semiconducting material by depositing a second semiconducting material from a solution in the solvent; and forming over the second layer a second electrode capable of injecting or accepting charge carriers of a second type wherein the first layer is rendered at least partially insoluble by one or more of heat, vacuum and ambient drying treatment following deposition of the first semiconducting material.
Abstract:
A light-emitting device comprising: an anode; a cathode; and a light emitting region situated between the anode and the cathode, the light emitting region comprising an exciton generating layer and a phosphorescent layer, the exciton generating layer comprising an organic material, wherein the organic material of the exciton generating layer generates singlet and triplet excitons and emits light by fluorescent emission from the singlet excitons and the phosphorescent layer accepts the triplet excitons from the exciton generating layer and emits light by phosphorescent emission from the triplet excitons.
Abstract:
A method of forming an optical device comprising the steps of: providing a substrate comprising a first electrode capable of injecting or accepting charge carriers of a first type; forming over the first electrode a first layer that is at least partially insoluble in a solvent by depositing a first semiconducting material that is free of cross-linkable vinyl or ethynyl groups and is, at the time of deposition, soluble in the solvent; forming a second layer in contact with the first layer and comprising a second semiconducting material by depositing a second semiconducting material from a solution in the solvent; and forming over the second layer a second electrode capable of injecting or accepting charge carriers of a second type wherein the first layer is rendered at least partially insoluble by one or more of heat, vacuum and ambient drying treatment following deposition of the first semiconducting material.
Abstract:
A method of forming an optical device comprising the steps of: providing a substrate comprising a first electrode capable of injecting or accepting charge carriers of a first type; forming over the first electrode a first layer that is at least partially insoluble in a solvent by depositing a first semiconducting material that is free of cross-linkable vinyl or ethynyl groups and is, at the time of deposition, soluble in the solvent; forming a second layer in contact with the first layer and comprising a second semiconducting material by depositing a second semiconducting material from a solution in the solvent; and forming over the second layer a second electrode capable of injecting or accepting charge carriers of a second type wherein the first layer is rendered at least partially insoluble by one or more of heat, vacuum and ambient drying treatment following deposition of the first semiconducting material.
Abstract:
The gas turbines of the present invention have multiple combustion chambers, and within each chamber are multiple fuel nozzles. Each nozzle has its own fuel control valve to control the fuel flowing to the nozzles. To minimize the pressure drop through the fuel control valves, multiple manifolds are employed. Each manifold supplies at least one fuel nozzle in multiple combustion chambers with fuel. The fuel control valves are mounted on the manifolds such that the weight of the fuel control valves and nozzles are carried by the manifolds, not the multiple combustion chambers. A plurality of thermocouples for measuring exhaust gas from said multiple combustion chambers are employed to sense gas exhaust temperature. In carrying out the methods of the present invention for tuning a gas turbine, it is essential to note that the most efficient gas turbine is one which has the least nitrous oxides, the least amount of unburned hydrocarbons, and the least amount of carbon monoxide for a specified energy output. In order to tune the gas turbine to accomplish these objectives, it is desirable that each combustion chamber in the gas turbine be well balanced relative to the remaining combustion chambers. It is an aim of the present invention to tune each of the multiple combustion chambers such that no specific combustion chamber is rich or lean, and all are operating within about 1% of the remaining combustion chambers.
Abstract:
FIG. 1 is a first perspective view of a hanging moon planter in accordance with the design; FIG. 2 is a front elevational view of the hanging moon planter shown in FIG. 1; FIG. 3 is a back elevational view of the hanging moon planter shown in FIG. 1; FIG. 4 is a first side elevation view of the hanging moon planter shown in FIG. 1; FIG. 5 is a second side elevation view of the hanging moon planter shown in FIG. 1; FIG. 6 is a top plan view of the hanging moon planter shown in FIG. 1; FIG. 7 is a bottom plan view of the hanging moon planter shown in FIG. 1; and, FIG. 8 is a second perspective view of the hanging moon planter shown in FIG. 1 in a use configuration with environment. The broken lines shown in FIG. 8 is for the purpose of illustrating the environment and forms no part of the claimed design.
Abstract:
Composition which may be useful in an organic light emitting diode, the composition having a fluorescent light-emitting polymer with light-emitting repeat units, and a triplet-accepting unit mixed with the light-emitting polymer.