摘要:
A fuel cell system includes a fuel cell stack including a plurality of fuel cells. The fuel cell stack includes a middle portion of fuel cells and at least one end portion of fuel cells. The fuel cells of the end portion is arranged in a cascade configuration with the fuel cells of the middle portion. The system is configured such that in operation, at least partial reformation of hydrocarbon fuel occurs internally within the fuel cells of the middle portion and the fuel cells of the end portion are configured to use fuel exhaust from the middle portion as fuel.
摘要:
A fuel cell system includes a plurality of fuel cells, a plurality of interconnects, and a hydrogen separation device, wherein the hydrogen separation device separates hydrogen from the fuel cell stack anode exhaust. The separated hydrogen is then reintroduced into the fuel cell stack to optimize overall system efficiency. Monitoring of the performance of the hydrogen separation device gives an indication as to the fuel cell system performance.
摘要:
A method for operating a fuel cell system during an interruption includes identifying a load interruption in which an external load is partially or fully unable to draw electrical power from the fuel cell system. At least a first fuel cell column of the fuel cell system is operated in an electrolysis mode such that the first fuel cell column generates fuel during the load interruption. Power is provided to the first fuel cell column in the electrolysis mode from at least a second fuel cell column of the fuel cell system. The second fuel cell column is operating in a normal power generation operating mode.
摘要:
Solid oxide fuel cell power generation systems which are capable of producing high-quality heat are used to drive refrigeration systems. The amount of electrical energy produced and the cooling capacity obtainable are well matched to electronic data center power and cooling needs. The power generation system includes a solid oxide fuel cell stack, a heat pump and an optional turbine.
摘要:
A method for operating a fuel cell system during an interruption includes identifying a load interruption in which an external load is partially or fully unable to draw electrical power from the fuel cell system. At least a first fuel cell column of the fuel cell system is operated in an electrolysis mode such that the first fuel cell column generates fuel during the load interruption. Power is provided to the first fuel cell column in the electrolysis mode from at least a second fuel cell column of the fuel cell system. The second fuel cell column is operating in a normal power generation operating mode.
摘要:
A fuel cell interconnect includes a first side containing a first plurality of channels and a second side containing a second plurality of channels. The first and second sides are disposed on opposite sides of the interconnect. The first plurality of channels are configured to provide a serpentine fuel flow field while the second plurality of channels are configured to provide an approximately straight air flow field.
摘要:
A high temperature electrochemical system, such as a solid oxide fuel cell system, generates hydrogen and optionally electricity in a fuel cell mode. At least a part of the generated hydrogen is separated and stored or provided to a hydrogen using device. A solid oxide regenerative fuel cell system stores carbon dioxide in a fuel cell mode. The system generates a methane fuel in an electrolysis mode from the stored carbon dioxide and water by using a Sabatier subsystem. Alternatively, the system generates a hydrogen fuel in an electrolysis mode from water alone.
摘要:
A fuel cell interconnect includes a first side containing a first plurality of channels and a second side containing a second plurality of channels. The first and second sides are disposed on opposite sides of the interconnect. The first plurality of channels are configured to provide a serpentine fuel flow field while the second plurality of channels are configured to provide an approximately straight air flow field.
摘要:
A method in which a high temperature electrochemical system, such as a solid oxide fuel cell system, generates hydrogen and optionally electricity in a fuel cell mode. At least a part of the generated hydrogen is separated and stored or provided to a hydrogen using device. A solid oxide regenerative fuel cell system stores carbon dioxide in a fuel cell mode. The system generates a methane fuel in an electrolysis mode from the stored carbon dioxide and water by using a Sabatier subsystem. Alternatively, the system generates a hydrogen fuel in an electrolysis mode from water alone.
摘要:
A high temperature electrochemical system, such as a solid oxide fuel cell system, generates hydrogen and optionally electricity in a fuel cell mode. At least a part of the generated hydrogen is separated and stored or provided to a hydrogen using device. A solid oxide regenerative fuel cell system stores carbon dioxide in a fuel cell mode. The system generates a methane fuel in an electrolysis mode from the stored carbon dioxide and water by using a Sabatier subsystem. Alternatively, the system generates a hydrogen fuel in an electrolysis mode from water alone.