摘要:
High efficiency electricity generation processes and systems with substantially zero CO2 emissions are provided. A closed looping between the unit that generates gaseous fuel (H2, CO, etc) and the fuel cell anode side is formed. In certain embodiments, the heat and exhaust oxygen containing gas from the fuel cell cathode side are also utilized for the gaseous fuel generation. The resulting power generation efficiencies are improved due to the minimized steam consumption for the gaseous fuel production in the fuel cell anode loop as well as the strategic mass and energy integration schemes.
摘要:
Method of combining industrial processes having inherent carbon capture and conversion capabilities offering maximum flexibility, efficiency, and economics while enabling environmentally and sustainably sound practices. Maximum chemical energy is retained throughout feedstock processing. A hybrid thermochemical cycle couples staged reforming with hydrogen production and chlorination. Hydrogen generated is used to upgrade feedstocks including bitumen, shale, coal, and biomass. Residues of upgrading are chlorinated, metals of interest are removed, and the remainder is reacted with ammonia solution and carbon dioxide to form carbonate minerals. The combination provides emissions free production of synthetic crude oil and derivatives, as well as various metals and fertilizers. Sand and carbonate minerals are potentially the only waste streams. Through this novel processing, major carbon dioxide reduction is afforded byminimizing direct oxidation. Supplemental heat to run the reactions is obtained through external means such as concentrated solar, geothermal, or nuclear.
摘要:
A system for gasifying a carbonaceous feedstock, such as municipal waste, to generate power includes a devolatilization reactor that creates char from the feedstock and a gasifier that creates a product gas from both the char and from volatiles released when devolatilizing the feedstock. The product gas is reacted in a fuel cell to create electrical energy and process heat. The process heat is used to heat the devolatilization reactor and the gasifier. The gasifier comprises a plurality of configurable circuits that can each be tuned to meet the individual needs of the char material being gasified.
摘要:
The present invention relates to processes and apparatuses for generating electrical power from certain non-gaseous carbonaceous feedstocks through the integration of catalytic hydromethanation technology with fuel cell technology.
摘要:
A solid oxide fuel cell system has a carbon monoxide generator using ultraclean coal or graphite, which includes a carbon supply unit, a carbon dioxide supply unit, a carbon monoxide generating unit, and a fuel cell unit. The carbon monoxide generating unit supplies CO to the anode of the fuel cell unit, and CO2 discharged from the fuel cell unit is recycled to the carbon dioxide supply unit. Because ultraclean coal or graphite is used, a separate reformer does not need to be used, and thus energy can be produced with high efficiency even at low costs. Because CO2 discharged from the solid oxide fuel cell, which uses carbon monoxide as a fuel, after a fuel cell reaction, is reused as reactant gas, carbon dioxide is not emitted into the atmosphere. Gasification can be smoothly achieved by the carbon monoxide generating unit including heating powder or a heating reaction chamber.
摘要:
A self-contained system for the generation of electrical energy from biomass by gasification combines several process units in one self-contained system. The global properties are greater than the sum of the individual properties of the process units.
摘要:
The process and system of the invention converts solid and liquid carbonaceous feedstock into electricity, steam, fuels, and carbon dioxide with minimal air emissions. Oxygen is partially consumed in a fuel cell then exhausted to a combustor of a Twin-Fluid Bed Steam Gasifier Unit (TFBSGU) where it is consumed in burning carbon contained in ash. After particulates are separated, the flue gas is expanded then cooled to recover power before returning to atmosphere or a bio-reactor. Synfuel leaving the TFBGSU is cooled in a heat recovery unit, producing steam and hot water. Carbon monoxide in this stream reacts with steam producing hydrogen and carbon dioxide. The stream is then cooled and compressed. The compressed gas passes through an acid gas removal system removing carbon dioxide and sulfur bearing compounds. Steam is added to the clean gas to prevent coking and the stream enters the anode space of the fuel cell.
摘要:
A direct carbonaceous material to power generation system integrates one or more solid oxide fuel cells (SOFC) into a fluidized bed gasifier. The fuel cell anode is in direct contact with bed material so that the H2 and CO generated in the bed are oxidized to H2O and CO2 to create a push-pull or source-sink reaction environment. The SOFC is exothermic and supplies heat within a reaction chamber of the gasifier where the fluidized bed conducts an endothermic reaction. The products from the anode are the reactants for the reformer and vice versa. A lower bed in the reaction chamber may comprise engineered multi-function material which may incorporate one or more catalysts and reactant adsorbent sites to facilitate excellent heat and mass transfer and fluidization dynamics in fluidized beds. The catalyst is capable of cracking tars and reforming hydrocarbons.
摘要:
A system and method capable of efficient production of synthesis gas from biomass materials in a manner which can be scaled to relatively large throughput capacities. the system is operable to compact a loose biomass material and simultaneously introduce the compacted biomass material into entrances of internal passages of multiple parallel reactors, heat the compacted biomass material within the reactors to a temperature at which organic molecules within the compacted biomass material break down to form ash and gases comprising carbon monoxide and hydrogen gases, inhibit combustion of the compacted biomass material when heated within the internal passages of the reactors, conduct the carbon monoxide and hydrogen gases through the reactors in a direction opposite the movement of the compacted biomass through the reactors, and remove the ash from the reactor.
摘要:
A method is provided for operating a coal gasifier, preferably an oxygen-blown two zone-coal gasifier, without the need for the addition of water and producing a high LHV-content coal product fuel gas from coal. A first supply of coal, preferably dry coal, first supply of carbon dioxide, and a supply of oxygen are passed into a high pressure combustion vessel wherein the coal reacts with the oxygen and carbon dioxide to form an exothermic zone producing a combustion temperature in excess of the melting point of the ash in the coal. This in turn produces a melted ash and a combustion product gas comprising carbon monoxide. The melted ash is drained or otherwise removed for disposal and the combustion product gas subsequently is passed into an entrained flow reaction vessel. A second supply of dry coal and a second supply of carbon dioxide are injected into the entrained flow reaction vessel wherein the coal thermally reacts with the combustion product gas and the carbon dioxide and produces a product fuel gas. The resultant product fuel gas comprises more moles of carbon monoxide than moles of carbon in the first and second supplies of coal. The product fuel gas may exhibit a gas exit temperature at a value below the melting point of the coal ash but no lower than about 1400° Kelvin, and it may be passed to a turbine having closed loop internal cooling thereby recovering energy and lowering the product gas pressure and temperature prior to potential heat exchange with incoming gasifier feed gases.