Abstract:
A metal mold for use in a nano-imprinting process comprises a firmly adhering monomolecular non-sticking layer. The later was obtained by subjecting the mold to a reaction with a fluoroalkyl compound having a mercapto group. As a result of said reaction, the layer comprises an organic sulfide of said metal.
Abstract:
The invention provides a modification of a polymer film surface interaction properties. In this process a polymer carrier object is covered by a chemical composition, comprising photo-polymerizable compounds, photo-initiators or catalysts with the ability to initiate polymerization and semi-fluorinated molecules. The so-produced polymer mold contains semi-fluorinated moieties, which are predominantly located on the surface and on the surface near region of the patterned surface. The polymer mold is suitable as a template with modified properties in a nano-imprint lithography process.
Abstract:
The invention relates to a novel metal mold having anti-adhesive properties comprising a base metal mold and an anti-adhesive layer comprising a fluorinated alkyl phosphoric acid derivative or a fluorinated alkyl poly-phosphoric acid derivative, including a phosphorous atom and an alkyl chain. The anti-adhesive layer is bonded directly onto a surface of the base metal mold. The base metal mold may be e.g. Nickel, and said fluorinated alkyl phosphoric acid derivative or said fluorinated alkyl poly-phosphoric acid derivative may be selected from the group consisting of phosphonic acids, phosphonic acids, phosphonates and phosphonate salts, phosphonates and phosphonate salts, or their respective oligomers, such that the phosphorous atom is coupled directly to the alkyl chain, such that the phosphorous atom is coupled directly to the alkyl chain.
Abstract:
The invention relates to an electronic module and to a method for producing same, comprising a mould body (2), a first circuit carrier (3; 13) having a first inner face (3a; 13a), on which electronic components (5) are arranged, and a first outer face (3b; 13b), a second circuit carrier (4; 14) having a second inner face (4a; 14a), on which electronic components (5) are arranged, and a second outer face (4b; 14b), and at least one spring device (6, 7; 16) which connects the inner faces (3a, 14a; 13a, 14a), or surfaces of electronic components (5) arranged thereon, of the first and second circuit carriers (3, 4; 13, 14), wherein the first and second outer faces (3a, 4a; 13a, 14a) are exposed towards the outside of the electronic module in order to emit heat directly to the outside, and wherein the first and second outer faces (3a, 4a; 13a, 14a) are parallel to each other.
Abstract:
A method and process for obtaining a metal stamp from an intermediate polymer stamp comprising the steps of providing a first print layer on top of a first polymer layer, imprinting structures to obtain an intermediate stamp. A conductive layer is provided on top of the structures to obtain a seed layer if the imprinted polymer is a non-conductive, plating metal on top of the intermediate polymer stamp to obtain a metal stamp then separating the intermediate stamp from the metal stamp. This invention demonstrates stamp replication in high throughput and at low cost.
Abstract:
The invention relates to a novel metal mold having anti-adhesive properties comprising a base metal mold and an anti-adhesive layer comprising a fluorinated alkyl phosphoric acid derivative or a fluorinated alkyl poly-phosphoric acid derivative, including a phosphorous atom and an alkyl chain. The anti-adhesive layer is bonded directly onto a surface of the base metal mold. The base metal mold may be e.g. Nickel, and said fluorinated alkyl phosphoric acid derivative or said fluorinated alkyl poly-phosphoric acid derivative may be selected front the group consisting of phosphonic acids, phosphinic acids, phosphonates and phosphonate salts, phosphinates and phosphinate salts, or their respective oligomers, such that the phosphorous atom is coupled directly to the alkyl chain, such that the phosphorous atom is coupled directly to the alkyl chain.
Abstract:
The invention to provide curable materials, comprising photo-reactive compounds, in particular, photoinitiators and polymerizable mono- or multifunctional monomers such as acrylates or epoxides. The material may also contain fluoro-surfactants completely or partly terminated by functional groups with the ability to bind covalently to said chemical composition under curing. The curable compositions are either purely acrylate based or a hybrid of different types of monomers such as acrylates, epoxides or vinyl ethers. The polymerizable monomers may cure with the use of different types of photoinitiator, such as free radical photoinitiators or cationic photoinitiators, ultimately forming a hybrid resist comprising interpenetrating networks of different types of monomers e.g. acrylates and epoxides. The acrylate/epoxide hybrid system has showed improved replication properties in terms of high nano-imprint lithography process fidelity, due to increased conversion of acrylates and low shrinkage.
Abstract:
The invention relates to an electronic module and to a method for producing same, comprising a mold body (2), a first circuit carrier (3; 13) having a first inner face (3a; 13a), on which electronic components (5) are arranged, and a first outer face (3b; 13b), a second circuit carrier (4; 14) having a second inner face (4a; 14a), on which electronic components (5) are arranged, and a second outer face (4b; 14b), and at least one spring device (6, 7; 16) which connects the inner faces (3a, 14a; 13a, 14a), or surfaces of electronic components (5) arranged thereon, of the first and second circuit carriers (3, 4; 13, 14), wherein the first and second outer faces (3a, 4a; 13a, 14a) are exposed towards the outside of the electronic module in order to emit heat directly to the outside, and wherein the first and second outer faces (3a, 4a; 13a, 14a) are parallel to each other.
Abstract:
A method is provided for transferring a pattern from a template (1) to an object (12) in an imprint process, using a two-step process. The first step includes contacting a pattern of the template surface with a polymer material comprising one or more Cyclic Olefin Copolymers (COCs), to produce a flexible polymer replica having a structured surface with an inverse of the pattern of the template surface. In a second step, after releasing the flexible polymer replica from the template, the inverse pattern of the flexible polymer replica is pressed into a resist layer on a substrate, to imprint a replica of the pattern of the template surface in therein.
Abstract:
The invention relates to a novel metal mold having anti-adhesive properties comprising a base metal mold and an anti-adhesive layer comprising a fluorinated alkyl phosphoric acid derivative or a fluorinated alkyl poly-phosphoric acid derivative, including a phosphorous atom and an alkyl chain. The anti-adhesive layer is bonded directly onto a surface of the base metal mold. The base metal mold may be e.g. Nickel, and said fluorinated alkyl phosphoric acid derivative or said fluorinated alkyl poly-phosphoric acid derivative may be selected from the group consisting of phosphonic acids, phosphonic acids, phosphonates and phosphonate salts, phosphonates and phosphonate salts, or their respective oligomers, such that the phosphorous atom is coupled directly to the alkyl chain, such that the phosphorous atom is coupled directly to the alkyl chain.