摘要:
Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g. rapidly near the living tissue interface and more slowly farther into the injury zone. Additional benefits include the lower total drug dose within the delivery system, and spatial regulation of release which permits a greater percentage of the drug to be released at the time of greatest cellular activity.
摘要:
The invention provides fibrin-based, biocompatible materials useful in promoting cell growth, wound healing, and tissue regeneration. These materials are provided as part of several cell and tissue scaffolding structures that provide particular application for use in wound-healing and tissue regenerating. Methods for preparing these compositions and using them are also disclosed as part of the invention. A variety of peptides may be used in conjunction with the practice of the invention, in particular, the peptide IKVAV, and variants thereof. Generally, the compositions may be described as comprising a protein network (e.g., fibrin) and a peptide having an amino acid sequence that comprises a transglutaminase substrate domain (e.g., a factor XIIIa substrate domain) and a bioactive factor (e.g., a peptide or protein, such as a polypeptide growth factor), the peptide being covalently bound to the protein network. Other applications of the technology include their use on implantable devices (e.g., vascular graphs), tissue and cell scaffolding. Other applications include use in surgical adhesive or sealant, as well as in peripheral nerve regeneration and angiogenesis.
摘要:
The invention provides fibrin-based, biocompatible materials useful in promoting cell growth, wound healing, and tissue regeneration. These materials are provided as part of several cell and tissue scaffolding structures that provide particular application for use in wound-healing and tissue regenerating. Methods for preparing these compositions and using them are also disclosed as part of the invention. A variety of peptides may be used in conjunction with the practice of the invention, in particular, the peptide IKVAV, and variants thereof. Generally, the compositions may be described as comprising a protein network (e.g., fibrin) and a peptide having an amino acid sequence that comprises a transglutaminase substrate domain (e.g., a factor XIIIa substrate domain) and a bioactive factor (e.g., a peptide or protein, such as a polypeptide growth factor), the peptide being covalently bound to the protein network. Other applications of the technology include their use on implantable devices (e.g., vascular graphs), tissue and cell scaffolding. Other applications include use in surgical adhesive or sealant, as well as in peripheral nerve regeneration and angiogenesis.
摘要:
Biomaterial comprises a three dimensional polymeric network obtainable from the reaction of at least a first and second precursor molecule. The first precursor molecule is at least a trifunctional, branched component comprising at least three arms substantially similar in molecular weight and the second precursor molecule is at least a bifunctional component The ratio of equivalent weight or the functional groups of the first and second precursor molecule is in a range of between 0.9 and 1.1. The molecular weight of the arms of the first precursor molecule. the molecular weight of the second precursor molecule and the functionality of the branching points are selected so that the water content of the polymeric networks is between the equilibrium weight % and 92 weitht of the total weight of the polymeric network after completion of water uptake. The present invention teaches a way to improve characteristics of synthetic matrices which are useful for wound healing applications.
摘要:
Biomaterials containing a three-dimensional polymeric network formed from the reaction of a composition containing at least a first synthetic precursor molecule having n nucleophilic groups and a second precursor molecule having m electrophilic groups wherein the sum of n+m is at least five and wherein the sum of the weights of the first and second precursor molecules is in a range from about 8 to about 16% b weight of the composition, preferably from about 10 to about 15%, more preferably from about 12 to about 14.5% by weight of the composition. In one embodiment, the first and second precursor molecules are polyethylene glycols functionalized with nucleophilic and electrophilic groups, respectively. In a preferred embodiment, the nucleophilic groups are amino and/or thiol groups and the electrophilic groups are conjugated, unsaturated groups. The ratio of the equivalent weights of the electrophilic groups (second precursor molecule) and the nucleophilic groups (first precursor molecule) is in the range of between 0.7 and 1.1, more preferably between 0.8 and 1.0. The first and/or second precursor molecule may be covalently bound to one or more molecules selected from the group consisting of cell adhesion peptides, growth factors, and growth factor-like peptides.
摘要:
Proteins are incorporated into protein or polysaccharide matrices for use in tissue repair, regeneration and/or remodeling and/or drug delivery. The proteins can be incorporated so that they are released by degradation of the matrix, by enzymatic action and/or diffusion. As demonstrated by the examples, one method is to bind heparin to the matrix by either covalent or non-covalent methods, to form a heparin-matrix. The heparin then non-covalently binds heparin-binding growth factors to the protein matrix. Alternatively, a fusion protein can be constructed which contains a crosslinking region such as a factor XIIIa substrate and the native protein sequence. Incorporation of degradable linkages between the matrix and the bioactive factors can be particularly useful when long-term drug delivery is desired, for example in the case of nerve regeneration, where it is desirable to vary the rate of drug release spatially as a function of regeneration, e.g. rapidly near the living tissue interface and more slowly farther into the injury zone. Additional benefits include the lower total drug dose within the delivery system, and spatial regulation of release which permits a greater percentage of the drug to be released at the time of greatest cellular activity.
摘要:
Bioactive molecules are entrapped within a matrix for the controlled delivery of these compounds for therapeutic healing applications. The matrix may be formed of natural or synthetic compounds. The primary method of entrapment of the bioactive molecule is through precipitation of the bioactive molecule during gelation of the matrix, either in vitro or in vivo. The bioactive molecule may be modified to reduce its effective solubility in the matrix to retain it more effectively within the matrix, such as through the deglycosylation of members within the cystine knot growth factor superfamily and particularly within the TGFβ superfamily. The matrix may be modified to include sites with binding affinity for different bioactive molecules, for example, for heparin binding.
摘要:
A medical device containing an inflatable balloon structure for use in minimally invasive surgery and minimally invasive diagnostic and therapeutic procedures are described herein. The device is delivered by a catheter and expanded using gases, liquids or liquids that solidify in situ. The inflatable balloon may be constructed from a wide variety of materials and may be reinforced by supporting structures, when necessary. The device may form an endoprosthesis in a patient. In the preferred embodiment, the device is used in spinal fusion. Optionally, the device may also be used in combination with bone graft materials and bioactive factors.
摘要:
Supplemented matrices comprising a PTH releasably incorporated therein, optionally containing a granular material, which are used to heal bone fractures, particularly bone fractures with a risk of becoming delayed unions or non-unions, are described herein. The PTH is incorporated either through covalent linkage to the matrix or through non-covalent interaction with the matrix and/or the granules. These supplemented matrices decrease the time of healing compared to autograft and or trigger healing of bone fractures which otherwise would not heal. The matrices are biocompatible, preferably biodegradable, and can be formed in vitro or in vivo, at the time of implantation. The PTH may be a part of a fusion peptide. PTH can be incorporated into the matrices with full retention of its bioactivity. PTH can be releasably incorporated in the matrix.
摘要:
A pharmaceutical formulation for use in a spinal fusion method, comprising a composition for forming a matrix, a kit comprising the composition, a pharmaceutical product obtainable from the pharmaceutical formulation, and an interbody spinal fusion cage containing the pharmaceutical formulation or the pharmaceutical product are described herein. The composition comprises at least a first matrix material precursor component and a second matrix material precursor component that are able to crosslink to form the matrix under appropriate conditions, a bioactive factor that is biologically active for stimulating bone formation between two vertebrae and for effecting or supporting spinal fusion. The bioactive factor is PTH, optionally a PTH fusion peptide. The bioactive factor is releasably incorporated in the matrix upon crosslinking of the matrix material precursor components.