摘要:
A method in a user equipment for arranging a Physical Uplink Control Channel, PUCCH, transmission to a network node in a telecommunications system is provided. The PUCCH transmission comprises control information for downlink transmissions. The control information is Reed-Müller, RM, encoded using at least two RM codewords and transmitted using Alamouti encoded transmit diversity over at least two antenna ports. The control information comprises a first bit sequence and a second bit sequence. The user equipment arranges the first bit sequence and the second bit sequence, such that at least two bits from the first bit sequence and second bit sequence, that subsequently are Alamouti encoded together, originates from the same RM codeword of the at least two RM codewords. This is performed in order to enable control information encoded using one RM codeword to be processed independently from control information encoded using another RM codeword at the network node.
摘要:
A method sends uplink control information from a user equipment to a serving node of a radio communications system by first encoding uplink control information bits into symbols. The encoded symbols are split into at least two groups of symbols for use to achieve diversity transmission. Each of the at least two groups of symbols are cyclically repeated to generate a repeated group for each of the at least two groups of symbols. Then the repeated groups are mapped each to different transmission ports of the user equipment for diversity transmission as uplink control information through a plurality of uplink transmission slots of an uplink subframe.
摘要:
A method sends uplink control information from a user equipment to a serving node of a radio communications system by first encoding uplink control information bits into symbols. The encoded symbols are split into at least two groups of symbols for use to achieve diversity transmission. Each of the at least two groups of symbols are cyclically repeated to generate a repeated group for each of the at least two groups of symbols. Then the repeated groups are mapped each to different transmission ports of the user equipment for diversity transmission as uplink control information through a plurality of uplink transmission slots of an uplink subframe.
摘要:
A method in a user equipment for arranging a Physical Uplink Control Channel, PUCCH, transmission to a network node in a telecommunications system is provided. The PUCCH transmission comprises control information for use in downlink carrier transmissions. Furthermore, the control information is Reed-Müller, RM, encoded using at least two RM codewords and transmitted using Alamouti encoded transmit diversity over at least two antenna ports. Also, the control information comprises a first bit or symbol sequence and at least a second bit or symbol sequence. The user equipment arranges the first bit or symbol sequence and the at least second bit or symbol sequence, such that at least two bits or symbols from the first bit or symbol sequence and at least second bit or symbol sequence, that subsequently are Alamouti encoded together, originates from the same RM codeword of the at least two RM codewords. This is performed in order to enable control information encoded using one RM codeword to be processed independently from control information encoded using another RM codeword at the network node.A user equipment, a method in network node and a network node are also provided.
摘要:
In a method of operating a communication network (20) a time division duplex (TDD) frame (F) of information is communicated over a radio interface (32) between a wireless terminal (30) and a base station node (28). The method comprises the wireless terminal (30) receiving plural downlink (DL) subframes of the frame and, in response thereto, configuring a Physical Uplink Control Channel (PUCCH) channel to comprise up to four acknowledgements by using only two PUCCH channel resources and using PUCCH format 1a or PUCCH format 1b. In an example embodiment a PUCCH channel resource is specified by a sequence utilized for transmission of at least part of the PUCCH channel and a cyclical shift applied to the sequence. The two sequences of the respective two PUCCH resources are orthogonal, and the cyclical shift of the two PUCCH resources can be in a frequency domain, a time domain, or both the frequency domain and the time domain.
摘要:
In a communication system using HARQ, the problem of false ACK detection when no ACK/NACK feedback is transmitted is solved sent by varying the reliability of the scheduling information transmitted to the user terminal on a downlink control channel depending on whether the user terminal is expected to use a first or second uplink channel for sending ACK/NACK feedback. When the user terminal is expected to use the first channel to send ACK/NACK feedback, the base station transmits scheduling information to the user terminal with normal reliability. When the user terminal is expected to send ACK/NACK feedback on the second uplink channel, the base station transmits the signaling information to the user terminal with enhanced reliability. The reliability of the signaling information can be increased, for example, by increasing the transmit power on the downlink control channel, increasing the aggregation level, or a combination thereof.
摘要:
In a method of operating a communication network (20) a time division duplex (TDD) frame (F) of information is communicated over a radio interface (32) between a wireless terminal (30) and a base station node (28). The method comprises the wireless terminal (30) receiving plural downlink (DL) subframes of the frame and, in response thereto, configuring a Physical Uplink Control Channel (PUCCH) channel to comprise up to four acknowledgements by using only two PUCCH channel resources and using PUCCH format 1a or PUCCH format 1b. In an example embodiment a PUCCH channel resource is specified by a sequence utilized for transmission of at least part of the PUCCH channel and a cyclical shift applied to the sequence. The two sequences of the respective two PUCCH resources are orthogonal, and the cyclical shift of the two PUCCH resources can be in a frequency domain, a time domain, or both the frequency domain and the time domain.
摘要:
In a communication system using HARQ, the problem of false ACK detection when no ACK/NACK feedback is transmitted is solved sent by varying the reliability of the scheduling information transmitted to the user terminal on a downlink control channel depending on whether the user terminal is expected to use a first or second uplink channel for sending ACK/NACK feedback. When the user terminal is expected to use the first channel to send ACK/NACK feedback, the base station transmits scheduling information to the user terminal with normal reliability. When the user terminal is expected to send ACK/NACK feedback on the second uplink channel, the base station transmits the signaling information to the user terminal with enhanced reliability. The reliability of the signaling information can be increased, for example, by increasing the transmit power on the downlink control channel, increasing the aggregation level, or a combination thereof.
摘要:
A node of a wireless network transmits information to a user equipment over an aggregated carrier that includes a primary carrier having a first set of primary carrier time/frequency resources and a secondary carrier having a second set of secondary carrier time/frequency resources. Synchronization signals and/or reference symbols are transmitted to the user equipment on the secondary carrier less often than on the primary carrier. An indication of when and/or how often the synchronization signals and/or reference symbols will be transmitted to the user equipment on the secondary carrier may also be transmitted to the user equipment over the primary carrier. By transmitting synchronization signals and/or reference symbols to the user equipment on the secondary carrier less often than on the primary carrier, resources of the secondary carrier may be conserved, energy efficiency of the secondary carrier may be increased, and/or interference with other cells may be reduced or prevented.
摘要:
The scheduling flexibility of CSI reference signals enables time and frequency synchronization using multiple non-zero CSI-RSs transmitted in the same subframe, or using CSI-RSs transmitted in the same subframe with other synchronization signals. Also, multiple synchronization signals may be scheduled in the same subframe to enable fine time and frequency synchronization without cell-specific reference signals.