Abstract:
A programmable amplifier circuit includes an amplifier, an input capacitor coupled to an input of the amplifier, a feedback capacitor coupled to the input of the amplifier and an output of the amplifier, and a switched-capacitor resistor circuit. The switched-capacitor resistor circuit is coupled between the input of the amplifier and the output of the amplifier, and configured for simulating a feedback resistor element to provide a resistance for a feedback path of the amplifier by using at least one capacitor placed between the input of the amplifier and the output of the amplifier to avoid leakage current(s) flowing back to an input of the amplifier.
Abstract:
A device for removing crosstalk includes a jack to form an electrical connection with a plug, and an audio unit to provide a left audio channel and a right audio channel to the plug. The audio unit includes a crosstalk cancellation circuit. The crosstalk cancellation circuit estimates the crosstalk between the left audio channel and the right audio channel to obtain an estimated right-to-left crosstalk and an estimated left-to-right crosstalk, and to remove the crosstalk by subtracting the estimated right-to-left crosstalk and the estimated left-to-right crosstalk from digital signals in the left audio channel and the right audio channel, respectively.
Abstract:
A display apparatus is provided. The display apparatus includes a detector and a controller. The detector is arranged for detecting motion of the display apparatus to identify an activity of a user of the display apparatus, and accordingly generating an identification result. The controller is coupled to the detector, and is arranged for determining a display resolution of the display apparatus according to the identification result.
Abstract:
A technique, as well as select implementations thereof, pertaining to cross-mounting a device is described. The technique may involve an apparatus detecting a presence of a device not a part of the apparatus. The technique may also involve the apparatus performing an update in response to the detecting of the presence of the device. The technique may additionally involve the apparatus establishing a communication connection with the device. The technique may further involve the apparatus utilizing the device to perform one or more tasks.
Abstract:
A programmable amplifier circuit includes an amplifier, an input capacitor coupled to an input of the amplifier, a feedback capacitor coupled to the input of the amplifier and an output of the amplifier, and a switched-capacitor resistor circuit. The switched-capacitor resistor circuit is coupled between the input of the amplifier and the output of the amplifier, and configured for simulating a feedback resistor element to provide a resistance for a feedback path of the amplifier by using at least one capacitor placed between the input of the amplifier and the output of the amplifier to avoid leakage current(s) flowing back to an input of the amplifier.
Abstract:
A system for accessing data among at least two different electronic devices is provided. The system includes a demanding electronic device and a providing electronic device. The demanding electronic device is utilized to establish an input virtual device to execute an application on the demanding electronic device. The providing electronic device is utilized to establish an output virtual device for transmitting data from the providing electronic device to the demanding electronic device via the output virtual device, wherein the data corresponds to the application, and the providing electronic device is physically separated from the demanding electronic device. The input virtual device is established to use a first peripheral of the providing electronic device as a built-in peripheral of the demanding electronic device.
Abstract:
A device includes an audio unit to provide a left audio channel, a right audio channel and a microphone channel to a headset plug. The device also includes a headset jack to form an electrical connection with the headset plug, and a swap switch configurable to swap connections of a ground terminal and a microphone terminal of the headset plug to the audio unit. The audio unit further includes: a first crosstalk cancellation circuit to subtract an estimated right-to-left crosstalk from a left digital path of the left audio channel, and to subtract an estimated left-to-right crosstalk from a right digital path of the right audio channel; and a second crosstalk cancellation circuit to subtract an estimated left-to-microphone crosstalk and an estimated right-to-microphone crosstalk from a microphone digital path of the microphone channel.
Abstract:
A device for removing crosstalk includes a jack to form an electrical connection with a plug, and an audio unit to provide a left audio channel and a right audio channel to the plug. The audio unit includes a crosstalk cancellation circuit. The crosstalk cancellation circuit estimates the crosstalk between the left audio channel and the right audio channel to obtain an estimated right-to-left crosstalk and an estimated left-to-right crosstalk, and to remove the crosstalk by subtracting the estimated right-to-left crosstalk and the estimated left-to-right crosstalk from digital signals in the left audio channel and the right audio channel, respectively.
Abstract:
A device includes an audio unit to provide a left audio channel, a right audio channel and a microphone channel to a headset plug. The device also includes a headset jack to form an electrical connection with the headset plug, and a swap switch configurable to swap connections of a ground terminal and a microphone terminal of the headset plug to the audio unit. The audio unit further includes: a first crosstalk cancellation circuit to subtract an estimated right-to-left crosstalk from a left digital path of the left audio channel, and to subtract an estimated left-to-right crosstalk from a right digital path of the right audio channel; and a second crosstalk cancellation circuit to subtract an estimated left-to-microphone crosstalk and an estimated right-to-microphone crosstalk from a microphone digital path of the microphone channel.
Abstract:
A technique, as well as select implementations thereof, pertaining to cross-mounting a device is described. The technique may involve an apparatus detecting a presence of a device not a part of the apparatus. The technique may also involve the apparatus performing an update in response to the detecting of the presence of the device. The technique may additionally involve the apparatus establishing a communication connection with the device. The technique may further involve the apparatus utilizing the device to perform one or more tasks.