摘要:
Methods and compositions for forming shells for investment casting and methods for casting metal articles using the shells are described. One embodiment of the method comprises serially immersing a pattern in at least one, and perhaps several different slurries, each of which slurries comprises refractory material and from about 0 to about 30 volume percent inorganic binder. This forms a facecoat and plural refractory backup layers about the pattern, the facecoat and at least one backup layer defining a shell. The facecoat and/or the shell is then infiltrated with a binder. Infiltrating the shell with a binder is a key feature of the present invention. Infiltration refers to any process whereby a binder can be introduced into the facecoat and/or the subsequent layers built up about the shell. One method of infiltrating the facecoat and/or layers with binder comprises immersing the pattern having refractory material into a slurry comprising a binder, including inorganic binders, organic binders, and mixtures thereof. The pattern then is separated from the shell, forming a shell having an internal void in the shape of an article to be cast. Molten metal is then introduced into the void and allowed to solidify.
摘要:
Time-stable yttria slurries, and a method for forming such yttria slurries and articles therefrom are described. The method involves forming an intimate mixture comprising yttria and at least about 0.1 weight percent of a dopant material. An aqueous slurry is then formed comprising from about 1 weight percent to about 95 weight percent of the intimate mixture. The intimate mixture may be formed by heating the mixture to a temperature sufficient to calcine the mixture. Alternatively, the intimate mixture may be formed by heating the mixture to a temperature sufficient to fuse the mixture. The dopant also may be provided as a surface coating on the yttria particles. The dopant material comprises an oxide or hydroxide, or combinations thereof, or compounds that form such oxides or hydroxides upon further processing, wherein the metal oxides or hydroxides are of metals selected from the group consisting of aluminum, titanium, niobium, tantalum, silicon, hafnium, tin, gallium, indium, beryllium, thorium, boron, scandium, vanadium, chromium, ruthenium, rhodium, iridium, palladium, platinum, copper, germanium, bismuth, tellurium, erbium, thulium, ytterbium, lutetium, neptunium, plutonium, and combinations thereof. The aqueous suspension may further comprise other materials, such as other ceramic or metallic particles, co-solvents, dispersing agents, surfactants, inorganic binders, or organic binders.
摘要:
Embodiments of a method for increasing the lifetime of a casting slurry are described. One feature of the disclosed embodiments comprises processing refractory materials that are used to form casting slurries to provide a substantial increase in slurry lifetime for slurries made using such processed materials compared to slurries made using materials not processed as described herein. One embodiment of the method comprises heat processing at least one refractory powder. Without limiting the invention to a theory of operation, processing is continued for a period of time sufficient to reduce the amount of hydration from a first hydration level to a second hydration level. A slurry is formed using the refractory powder at a hydration level which provides an increased slurry lifetime relative to the same material without processing according to the disclosed embodiments.
摘要:
Methods for increasing the lifetime of a casting slurry are described. One feature of the invention is processing refractory powders at a first hydration level to produce powders having a second, lower hydration level before the processed materials are used to form casting slurries. Processing according to the disclosed methods results in a substantial increase in the lifetime of a slurry made using such processed materials compared to slurries made using materials not processed as described herein. One embodiment of the method comprises heat processing at least one refractory powder, typically refractory powders which have undergone hydration subsequent to commercial production, for a period of time sufficient to reduce the amount of hydration from a first hydration level to a second hydration level. A slurry is formed using the refractory powder at an hydration level which provides an increased slurry lifetime relative to the same material without processing according to the method of the present invention. Slurry formation can be accomplished substantially immediately after processing, or up to about one week after processing, typically less than 24 hours after processing, and even more typically within 2 hours to about 8 hours after processing.
摘要:
A method for imaging inclusions in metal or metal alloy castings is described. One embodiment of the present method first involves casting a metal or metal alloy article using an investment casting mold where the mold facecoat, and perhaps one or more of the mold backup layers, comprises an imaging agent distributed substantially uniformly throughout in amounts sufficient for imaging inclusions. The facecoat preferably comprises an intimate mixture of a refractory material and the imaging agent. Intimate mixtures can be produced in a number of ways, but a currently preferred method is to cocalcine the refractory material, such as yttria, with the imaging agent, such as gadolinia. The facecoat also can comprise plural mold-forming materials and/or plural imaging agents. The difference between the linear attenuation coefficient of the article and the linear attenuation coefficient of the imaging agent should be sufficient to allow imaging of the inclusion throughout the article. The metal or metal alloy article is then analyzed for inclusions by N-ray analysis. The method also can include the step of analyzing the metal or metal alloy by X-ray analysis. The imaging agent, typically a metal oxide or salt, comprises a material selected from the group consisting of boron, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, ytterbium, lutetium, iridium, physical mixtures thereof and chemical mixtures thereof.
摘要:
A metal or metal alloy article is cast using an investment casting mold where the mold facecoat, and perhaps one or more of the mold backup layers, comprises an imaging agent distributed substantially uniformly throughout in amounts sufficient for imaging inclusions. The facecoat preferably comprises an intimate mixture of a refractory material and the imaging agent. Intimate mixtures can be produced in a number of ways, but a currently preferred method is to cocalcine the refractory material, such as yttria, with the imaging agent, such as gadolinia. The facecoat also can comprise plural mold-forming materials and/or plural imaging agents. The difference between the linear attenuation coefficient of the article and the linear attenuation coefficient of the imaging agent should be sufficient to allow imaging of the inclusion throughout the article. The metal or metal alloy article is then analyzed for inclusions by N-ray analysis. The method also can include the step of analyzing the metal or metal alloy by X-ray analysis. The imaging agent, typically a metal oxide or salt, comprises a material selected from the group consisting of boron, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, ytterbium, lutetium, iridium, physical mixtures thereof and chemical mixtures thereof.
摘要:
Wax compositions that are useful, amongst other things, for forming investment casting patterns are described. One embodiment of the wax composition comprises: (a) pattern wax; and (b) from about 1% to about 85% by weight of a polymeric organic carbonate filler material. Examples of particular polymeric organic carbonate filler materials include, without limitation, polyethylene carbonate, polypropylene carbonate, poly(cyclohexane carbonate), poly(cyclohexane propylene carbonate), and mixtures thereof. Crosslinking the organic portion of the polymeric organic carbonate filler material can substantially reduce its thermal expansion. The wax compositions generally include other materials commonly used to form wax compositions. Such materials include waxes and resinous materials, conventional fillers, ultra-violet curable monomers, plasticizers, lubricants, and mixtures thereof. Conventional fillers, including urea, can be copolymerized with the polymeric organic carbonate filler material to reduce the dissolution and/or agglomeration of the filler. Wax patterns useful for forming investment casting molds are then made from such compositions using conventional techniques, such as injection molding. The patterns are serially immersed in slurries comprising refractory materials to form casting molds. Metal and metal alloy articles are then cast using such molds.