摘要:
According one embodiment, a millimeter-wave radiation imaging array includes a plurality of antenna elements configured to receive millimeter-wave radiative input. Each lenslet of a plurality of lenslets are coupled to one of the plurality of antenna elements such that no air exists between each lenslet and the one of the plurality of antenna elements. Each lenslet has a spherical portion being operable to direct the radiative input towards the one of the plurality of antenna elements. An energy detector is coupled to the plurality of antenna elements opposite the plurality of lenslets and operable to measure the radiative input received by the plurality of antenna elements.
摘要:
According one embodiment, a millimeter-wave radiation imaging array includes a plurality of antenna elements configured to receive millimeter-wave radiative input. Each lenslet of a plurality of lenslets are coupled to one of the plurality of antenna elements such that no air exists between each lenslet and the one of the plurality of antenna elements. Each lenslet has a spherical portion being operable to direct the radiative input towards the one of the plurality of antenna elements. An energy detector is coupled to the plurality of antenna elements opposite the plurality of lenslets and operable to measure the radiative input received by the plurality of antenna elements.
摘要:
According one embodiment, a non-heterodyne radiation imager includes a substrate having a ground plane layer. The radiation imager also includes a plurality of antenna elements operable to receive radiative input. Each support element of a plurality of support elements mechanically couples an antenna element of the plurality of antenna elements to the substrate. A plurality of energy detectors is operable to measure the radiative input received by the plurality of antenna elements.
摘要:
According one embodiment, a non-heterodyne radiation imager includes a substrate having a ground plane layer. The radiation imager also includes a plurality of antenna elements operable to receive radiative input. Each support element of a plurality of support elements mechanically couples an antenna element of the plurality of antenna elements to the substrate. A plurality of energy detectors is operable to measure the radiative input received by the plurality of antenna elements.
摘要:
A receiver chip for use in an imaging system includes a plurality of receiver dies, each of the receiver dies comprising one or more receiver circuits; a die interconnection layer located on top of the plurality of receiver dies; a quarter wave dielectric layer located on top of the die interconnection layer; and a plurality of antennae located on the quarter wave dielectric layer, each of the plurality of antennae corresponding to a respective receiver circuit, wherein the plurality of antennae are connected to the one or more receiver circuits through the quarter wave dielectric layer and the die interconnection layer by respective vias, such that a distance between a topmost layer of the die interconnection layer and the plurality of antennae is determined by a thickness of the quarter wave dielectric layer.
摘要:
A receiver chip for use in an imaging system includes a plurality of receiver dies, each of the receiver dies comprising one or more receiver circuits; a die interconnection layer located on top of the plurality of receiver dies; a quarter wave dielectric layer located on top of the die interconnection layer; and a plurality of antennae located on the quarter wave dielectric layer, each of the plurality of antennae corresponding to a respective receiver circuit, wherein the plurality of antennae are connected to the one or more receiver circuits through the quarter wave dielectric layer and the die interconnection layer by respective vias, such that a distance between a topmost layer of the die interconnection layer and the plurality of antennae is determined by a thickness of the quarter wave dielectric layer.
摘要:
According to one embodiment, a radiation sensor comprises a first pixel and a second pixel. The first pixel comprises a first plurality of antenna elements, a first photodetector, and one or more first feed lines coupling the first plurality of antenna elements to the first photodetector. The second pixel comprises a second plurality of antenna elements, a second photodetector, and one or more second feed lines coupling the second plurality of antenna elements to the second photodetector. The second pixel is an off-axis pixel. Signals feeding each of the second plurality of antenna elements are varied such that an effective radiation pattern of the second plurality of antenna elements is reinforced in a desired direction and suppressed in an undesired direction.
摘要:
A small array of antenna-coupled infrared bolometer detectors is connected in parallel. This small array is suitable as an individual area-receiving pixel of an infrared focal plane array. These pixels will have better coupling efficiency to extended sources than are possible with individual antenna-coupled sensors, which have a spatial response on the order of one wavelength in dimension. This pixel can be used to provide the advantages of antenna-coupled IR sensors (e.g., fast response, wavelength tuning, and polarization tuning) while increasing the collection efficiency of the sensors to non-laser sources. When integrated into focal plane arrays, these detectors can be used in remote-sensing systems to facilitate enhanced image recognition, feature extraction and image-clutter removal. A preferred version of the pixel forming the focal plane array antenna has a plurality of two parallel longitudinal metal antenna arms extending outward and opposite from an infrared (IR) bolometer sensor to separate parallel contact pads connected in turn to a means for receiving the output from said antenna. Application areas can include earth-resource mapping, pollution monitoring, and general surveillance.
摘要:
An infrared sensor element having an antenna coupled directly into a rectifier. Infrared radiation impinging the antenna induces an alternating current. The rectifier converts the alternating current into a rectified signal. The rectified signal corresponds to a magnitude of the incident infrared radiation impinging the antenna, and can be used for detection and imaging operations. Coupling the antenna directly into the rectifier eliminates the need for a photodetector. The wavelength of sensor elements can be separately tuned. A sensor made up of a plurality of such sensor elements can operate in a time-division multiplexed mode sensing different infrared bandwidths in separate time segments. Two or more sensors each made up of a plurality of sensor elements can be co-located in a single focal plane and operated separately to detect infrared radiation in different bandwidths. A sensor element can also operate in bandwidths other than infrared.
摘要:
An infrared sensor element having an antenna coupled directly into a rectifier. Infrared radiation impinging the antenna induces an alternating current. The rectifier converts the alternating current into a rectified signal. The rectified signal corresponds to a magnitude of the incident infrared radiation impinging the antenna, and can be used for detection and imaging operations. Coupling the antenna directly into the rectifier eliminates the need for a photodetector. The wavelength of sensor elements can be separately tuned. A sensor made up of a plurality of such sensor elements can operate in a time-division multiplexed mode sensing different infrared bandwidths in separate time segments. Two or more sensors each made up of a plurality of sensor elements can be co-located in a single focal plane and operated separately to detect infrared radiation in different bandwidths. A sensor element can also operate in bandwidths other than infrared.