摘要:
A method for measuring the temperature of a scene using a detector having at least one reference pixel, with an integratable sampling circuit associated with each pixel. Initially, an ambient reference temperature is observed with the reference pixel(s) to provide a parameter, generally voltage, indicative of that temperature to provide a constant voltage output indicating that temperature by varying the sampling circuit integration time. Each non-reference pixel is exposed to different scene and ambient temperatures and the integration time for each set of data for each pixel is recorded. For each pixel, an equation is provided relating integration time to pixel voltage when the ambient temperature and the scene temperature are the same to correct for offsets and an equation is provided relating integration time and offset corrected pixel value to the difference between the ambient temperature and the scene temperature when the ambient temperature and scene temperature differ for correction of responsivity. An equation is provided relating integration time to ambient temperature for calculating ambient temperature. The voltage level for each of the pixels and the integration is determined, the offset correction for each pixel is calculated based upon the integration time and the offset correction is applied to the pixel value for each pixel. The responsivity corrected value is calculated for each pixel based upon the integration time and the offset corrected pixel value. The ambient temperature is calculated based upon the integration time and the temperature difference between the ambient temperature and the scene temperature for each pixel which is calculated based upon the responsivity corrected pixel value using a scale factor determined during calibration. The ambient temperature and the difference between the ambient and the scene temperatures are added to obtain the actual scene temperature.
摘要:
A supporting beam line for supporting, afloat in a cavity on a semiconductor substrate, an infrared detection pixel comprising an infrared absorption portion for absorbing an incident infrared ray and converting it into heat and a thermoelectric conversion portion for converting a temperature change caused by the heat generated in the infrared absorption portion into an electric signal is formed by a damascene metal on the same layer as the gate of a damascene metal gate MOS transistor to be used in a peripheral circuit. The supporting beam line comprises a conductor line with U-shaped cross section inside which a metal is filled.
摘要:
Amorphous silicon/amorphous silicon germanium NI1PI2N position detectors are fabricated to suppress visible light and increase detection of infrared light. The material of I1 layer is amorphous silicon or amorphous silicon germanium used to absorb visible light, and material of I2 layer is amorphous silicon germanium or amorphous germanium used to absorb infrared light. A suppression of signal due to the absorption of the visible light and amplification of signals due to absorption of the infrared light can be obtained when the NI1P diode is forward biased and the P12N diode is reverse biased. The optical band gap of the I1 and I2 layers can be controlled by the Si/Ge atomic ratio. The suppression of visible light and enhanced detection of infrared light may be tuned by controlling thickness and optical band gaps of the I1 and I2 layers. The amorphous silicon and amorphous silicon germanium layers may be deposited by square-wave modulation at 13.56 MHz.
摘要:
A polarization-sensitive infrared (IR) detector array for use in infrared cameras and other IR based instruments, is comprised of multiple corrugated quantum well infrared photodetector elements (C-QWIP) that form a unitary detector unit (cell). The array is preferably two-dimensional, which can detect polarization contrast of an observed object in a scene. Each detector unit (cell) is formed by a group of C-QWIP detector elements having different groove orientations and cross sections. Each detector unit (cell) has at least two C-QWIP detector elements with their respective corrugations orthogonally oriented. Infrared detection by these detector cells is primarily by polarization contrast, compared to intensity contrast, which is well known in the art. By measuring polarization of reflected light from the observed object, the type of material can also be identified. A first array embodiment of the invention comprises four C-QWIP elements that form a cell. The second array embodiment of the invention comprises a detector having two C-QWIPs to form a detector cell.
摘要:
An object of the present invention is to provide a high-sensitivity infrared sensor. According to the present invention, a support member for supporting a sensor portion in a cavity structure is formed to be remarkably thin as compared with a conventional structure, a sectional area of the support member is considerably reduced, heat conductance can remarkably be reduced and, as a result, the infrared sensor having a remarkably high sensitivity can be obtained. Moreover, according to the present invention, since an insulating layer of a support member area is etched, and a sacrifice silicon film is embedded in the area, an aspect ratio of an insulating layer RIE for forming a support leg is remarkably reduced. A manufacturing process is facilitated, a sectional area of the support leg is further reduced as a secondary effect, and the sensitivity of the infrared sensor can further be enhanced.
摘要:
Crystal phase V2O3 with x=1.5 in VOx is prepared. Such a lower specific resistance than a desired one as a starting film quality is modified to the final desired specific resistance by heating under an oxidizing atmosphere. A protective film for a bolometer material is formed by physical vapor deposition.
摘要翻译:制备VO x中x = 1.5的晶相V 2 O 3。 通过在氧化气氛下加热,比作为起始膜质量的所需要的这种较低的电阻率被修饰为最终期望的电阻率。 通过物理气相沉积形成测辐射热量计材料的保护膜。
摘要:
A thermal infrared-detector array has semiconductor-junction elements as detectors. It has high sensitivity and low noise and is fabricated in semiconductor-fabrication process. The semiconductor-junction elements are located in a monocrystalline silicon layer overlying a silicon-oxide layer on a monocrystalline silicon substrate. A signal-output circuit reading out signals from the detector elements includes transistors located on the monocrystalline silicon substrate.
摘要:
A thermal infrared detecting device includes a lower layer portion having a readout circuit, and an upper layer portion having a bolometer thin film covered with an insulating protective film to perform heat/resistance conversion. The upper layer portion and the lower layer portion are spaced apart from each other while sandwiching a vacuum or sealed gas to form a thermal isolation structure, and also electrically connected to each other through an electrode film formed on the insulating protective film or in the insulating protective film. The bolometer thin film also serves as an infrared absorption film.
摘要:
Presented is a sensor system for the detection of thermal radiation, with a substrate (15) and several sensor elements (10) on the substrate (15), in which case at least one self-test device (53) is provided in order to generate heat which can be used for the heating of one or more sensor elements (10). The sensor elements (10) can be heated according to a typical time pattern during the self-testing process. Also presented is an advantageous process for the manufacture of the sensor system as well as an advantageous configuration of the total system, including signal processing.
摘要:
An infrared detector includes a semiconductor substrate having a hollow, a single crystal silicon thin film opposite the hollow at a distance from the semiconductor substrate, thermoelectric converters embedded in the single crystal silicon thin film and converting heat energy generated by infrared light irradiating the single crystal silicon thin film into an electric signal, a first connecting layer embedded in the single crystal silicon thin film and electrically connecting the thermoelectric converters to each other and a second connecting layer for transmitting the electric signal output by the thermoelectric converters to a wire in the semiconductor substrate. In the infrared detector, at least one of the first and second connecting layers is a silicon compound.