摘要:
The present disclosure provides compositions and methods related to the degradation of cellulose and cellulose-containing materials. CDH-heme domain polypeptides and GH61 polypeptides and related polynucleotides and compositions are provided herein. Additionally, methods related to CDH-heme domain polypeptides, GH61 polypeptides, and related polynucleotides and compositions, are provided herein
摘要:
The present disclosure relates to hydrolysis of hexose-δ-lactones by use of an S. thermophile extracellular aldonolactonase. In particular the present disclosure relates to compositions including a S. thermophile extracellular aldonolactonase and methods of use thereof.
摘要:
The present disclosure relates to hydrolysis of hexose-δ-lactones by use of an S. thermophile extracellular aldonolactonase. In particular the present disclosure relates to compositions including a S. thermophile extracellular aldonolactonase and methods of use thereof.
摘要:
H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
摘要:
The present disclosure provides photoactive polypeptides. A subject photoactive polypeptide is useful in a variety of applications, which are also provided.
摘要:
H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas NO delivery. The engineered H-NOX proteins comprise mutations that impart altered NO or 02 ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood NO gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of NO is beneficial.
摘要:
In vitro SELEX has been used to discover high affinity RNA aptamers interacting with the tetracycline repressor protein in a tetracycline-dependent manner. Using in silico RNA folding predictions to guide the design of both aptamer truncations and mutants, minimized tetracycline repressor protein high affinity binding aptamers have been defined. Using one such aptamer, inducible post-transcriptional regulation in vivo has been demonstrated that is predicated on a direct interaction between a tetracycline repressor protein and a RNA aptamer element. These aptamer components can be integrated in any organism to inducibly regulate RNA translation of a gene of interest.
摘要:
In vitro SELEX has been used to discover high affinity RNA aptamers interacting with the tetracycline repressor protein in a tetracycline-dependent manner. Using in silico RNA folding predictions to guide the design of both aptamer truncations and mutants, minimized tetracycline repressor protein high affinity binding aptamers have been defined. Using one such aptamer, inducible post-transcriptional regulation in vivo has been demonstrated that is predicated on a direct interaction between a tetracycline repressor protein and a RNA aptamer element. These aptamer components can be integrated in any organism to inducibly regulate RNA translation of a gene of interest.
摘要:
H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas NO delivery. The engineered H-NOX proteins comprise mutations that impart altered NO or O2 ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood NO gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of NO is beneficial.
摘要:
H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.