摘要:
The present invention provides a process for removing oxygenate impurities, e.g., dimethyl ether, from an olefinic product stream by converting the oxygenate impurity to a compound whose boiling point differs by at least about 5° C. from the oxygenate impurity. Typically, the compound is more readily removable from the product stream than the oxygenate impurity.
摘要:
The present invention provides a process for removing oxygenate impurities, e.g., dimethyl ether, from an olefinic product stream by converting the oxygenate impurity to a compound whose boiling point differs by at least about 5° C. from the oxygenate impurity. Typically, the compound is more readily removable from the product stream than the oxygenate impurity.
摘要:
The present invention is a process for producing olefin(s) from oxygenates that is more effective than previously known processes at removing carbon dioxide from the effluent stream by operating a quench tower at a pH greater than 7.0.
摘要:
This invention relates to a process and a chemical plant for the production primarily of paraxylene. In particular the process and chemical plant utilise zeolite membranes for enhanced paraxylene production.
摘要:
Synthesis gas is produced according to this invention using a combination of steam reforming and oxidation chemistry. The process incorporates the use of solids to heat the hydrocarbon feed, and to cool the gas product. According to the invention, heat can be conserved by directionally reversing the flow of feed and product gases at intermittent intervals.
摘要:
Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
摘要:
A process for feeding ethylene into a polymerization system includes providing a low-pressure ethylene stream, one or more low-pressure C3 to C20 monomer streams, an optional low-pressure inert solvent/diluent stream, and one or more reactors; metering the low-pressure ethylene stream, the one or more low-pressure C3 to C20 monomer streams, and the optional low-pressure inert solvent/diluent stream; blending the metered low-pressure ethylene stream, the metered one or more low-pressure C3 to C20 monomer streams, and the metered low-pressure optional inert solvent/diluent stream to form an ethylene-carrying low-pressure blended liquid feed stream; pressurizing the ethylene-carrying low-pressure blended liquid feed stream to the polymerization system pressure with one or more high-pressure pumps to thrm an ethylene-carrying high-pressure blended reactor feed stream; and feeding the ethylene-carrying high-pressure blended reactor feed stream to the one or more reactors.
摘要:
A monomer recycle process for fluid phase in-line blending of polymers is provided. In one form, the monomer recycle process includes providing a first group (G1) of one or more reactor trains and a second group (G2) of one or more reactor trains and one or more separators fluidly connected to G1 and one separator fluidly connected to G2; polymerizing in each reactor train of G1 and G2 olefin monomers to form homogenous fluid phase polymer-monomer mixtures wherein each of the G1 and G2 reactor trains have at least one common monomer; passing the reactor effluents from the one or more G1 reactor trains through the one or more G1 separators to separate a monomer-rich phase from a polymer-enriched phase; passing the polymer-enriched phase and the reactor effluents from the one or more G2 reactor trains into the G2 separator (separator-blender) to separate another monomer-rich phase from a polymer-rich blend; recycling to one or more G1 reactor trains the separated monomer-rich phase from the one or more G1 separators; and recycling to one or more G2 reactor trains the separated monomer-rich phase from the G2 separator. The polymer-rich blend is conveyed to a downstream finishing stage for further monomer stripping, drying and/or pelletizing to form a polymer product blend.
摘要:
A monomer recycle process for fluid phase in-line blending of polymers is provided. In one form, the monomer recycle process includes providing a first group (G1) of one or more reactor trains and a second group (G2) of one or more reactor trains and one or more separators fluidly connected to G1 and one separator fluidly connected to G2; polymerizing in each reactor train of G1 and G2 olefin monomers to form homogenous fluid phase polymer-monomer mixtures wherein each of the G1 and G2 reactor trains have at least one common monomer; passing the reactor effluents from the one or more G1 reactor trains through the one or more G1 separators to separate a monomer-rich phase from a polymer-enriched phase; passing the polymer-enriched phase and the reactor effluents from the one or more G2 reactor trains into the G2 separator (separator-blender) to separate another monomer-rich phase from a polymer-rich blend; recycling to one or more G1 reactor trains the separated monomer-rich phase from the one or more G1 separators; and recycling to one or more G2 reactor trains the separated monomer-rich phase from the G2 separator. The polymer-rich blend is conveyed to a downstream finishing stage for further monomer stripping, drying and/or pelletizing to form a polymer product blend.
摘要:
This invention is to a process and system for controlling solids distribution in a gas-solids reactor. Solids distribution is controlled by controlling electrical charges between solid particles flowing between conductive surfaces within a gas-solids reactor. The electrical charges are controlled by conventional means such as by grounding the opposing conductive surfaces, or by applying a voltage to one of the opposing conductive surfaces.