摘要:
Data objects are delivered over a packet-switched network and receivers receive encoded symbols, such as repair symbols, broadcast or multicast, with sufficient information to form requests for additional symbols as needed based on what source symbols or sub-symbols are needed or missing. The requests can be made in a unicast or request fashion. Requesting and broadcasting might be done by different entities. A broadcast server can generate and store repair symbols while a source server can store content in source form. A request can be a unicast HTTP byte-range request, such as a URL, starting position and length. Requests might be aligned with starting positions of files. A receiver can calculate starting and ending byte positions of symbols or sub-symbols in a file and get indications that conventional HTTP servers are usable for file repair. Repair servers can request broadcast of repair data when byte-range requests from multiple receivers overlap.
摘要:
In one example, a device for receiving information for multimedia data, the device comprising one or more processors configured to analyze at least a portion of a manifest file for multimedia content, wherein the portion of the manifest file includes information indicative of sets of representations of the multimedia content and information indicative of common characteristics for each of the sets of representations, select one of the sets of representations based on the common characteristics for the one of the sets of representations, select one of the representations of the selected one of the sets of representations based on one or more coding characteristics of the one of the representations of the one of the sets, and generate a request for data of the one of the representations based on the selection.
摘要:
A file (FI) is transmitted via a first channel (CH1). In addition, a second channel (CH2) is used to transmit play parameters (D1, D2, R1, R2) which comprise at least one set (Di, Ri) of information about a play rate (R1, R2) and a delay time (D1, D2) for the file (FI) which is to be transmitted by the first channel (CH1). On the basis of the play parameters (D1, D2, R1, R2), it is possible to determine a time for starting to process the file (FI) which is to be transmitted.
摘要:
An application encoder generates independently accessible symbols and these symbols are aggregated by symbol aggregation means into a packet payload. The aggregated symbols in the packet payload are transported in a defined packet structure. These packets are transported over a channel by a packet transmitter that segments the packets into different segments by segmentation means. A segment receiver included in a first entity has the ability to detect whether a certain segment is lost and also knows the length of the lost segment. The segments are aggregated in the first entity to form at least one packet conforming to the packet stream. A symbol parser entity recovers the symbols and passes the individual symbols to an application decoder. The symbol parser in the second entity recovers, from the recovered non-lost information of each received packet, individual symbols.
摘要:
For indicating lost segments (LS) across layer boundaries an application encoder (AE) generates independently accessible symbols (Sym) , these symbols (Sym) are aggregated by symbol aggregation means (SA) into a packet payload, the aggregated symbols in the packet payload are transported in a defined packet structure (P1) whereby the packet structure (P1) is defined by anyone of at least one packet header, a block- check sequence, and a payload of variable length of aggregated independent symbols, these packets are transported over a channel by a packet transmitter (PT) segmenting the packets into different segments (S2) by segmentation means (SE), a segment receiver (SR*) included in a first entity has the ability to detect whether a certain segment is lost and also knows the length of the lost segment, the segments are aggregated in the first entity to form at least one packet conforming to the packet stream, the one or more packets are delivered to a packet receiver (CPS) in another, second entity by means of a normalized interface (Nil) between the two entities which allows to pass packets according to the specified format from the first entity to the second entity, a symbol parser entity (CPS) recovers the symbols and passes the individual symbols (Sym) to an application decoder (AR), whereby either correct symbols or erased symbols can be forwarded to the application decoder, the segment receiver (SR*) in the first entity inserts a certain pattern at the position where the lost or defective segment would be which indicates the loss or defect of segment and the length of the lost or defect segment in the aggregated packet, the packet receiver (CPS) in the second entity knows the format, the syntax and the semantics of the inserted pattern, means in the second entity search for specific patterns in the received packet (RP1*) and interpret each found pattern to recover all reliable non-lost information within the packet, and a symbol parser (CPS) in the second entity recovers from the recovered non-lost information of each received packet (RP1*) individual symbols (Sym).
摘要:
A determination of indexes allocated to error correcting symbols is provided. Encoded code symbols are generated by means of a generator matrix of a block code from number of source symbols and the encoded transmission errors occur in the received code symbols, the indexes of the error correcting symbols are determined by unambiguously identifying the area of the encoded code symbols by means of first and second parameters, which can be requested in the form of at least one error correcting symbol by the receiving device from the transmitting device for reconstructing the source symbols in an error-free manner.
摘要:
Signaling the sending of source blocks within multiple physical layer blocks is done for both streaming and object delivery applications, using minimal additional overhead, and in some cases no overhead, to signal interleaved source blocks within a physical layer block, signaling how symbols are related to the source blocks from which they are generated, and signaled sending and indications of prioritized data for source blocks. Organizing and sending streams over one more channels can be done to improve the quality of delivered streams, while minimizing or improving the needed amount of channel resources and receiver power resources needed.
摘要:
There have been proposals to extend the MPE protocol to support different FEC schemes on the MPE layer. Examples of these proposals include: TM-SSP0178 describing a multiburst sliding encoding scheme based on Reed-Solomon (RS) codes, TM-SSP0199r1 describing a block-based encoding scheme based on multi-stage chain reaction (MSCR) codes, and TM-SSP0222 describing a multiburst sliding encoding scheme based on MSCR codes. A framework for harmonizing and integrating those techniques is described herein.
摘要:
A method of partially scrambling a data stream (6) including transport stream packets (7), each transport stream packet (7) having a header (8) and a payload (9), wherein a sequence of transport stream packets (7) has payloads carrying encoded data elements, arranged in units (15), includes: selecting transport stream packets (7) forming a subsequence of the sequence, and scrambling at least part of the payloads (9) of each transport stream packet (7) in the subsequence. The method further includes monitoring the payloads (9) of at least some of the transport stream packets (7) in the sequence for the presence of data (22) indicating a boundary between two subsequent units (15), and, for selected units (15), including at least one of the transport stream packets (7) carrying data forming part of the selected unit (15) in the sub-sequence.
摘要:
A coding method codes a sequence of digitized images with a plurality of macro blocks in error-prone networks in which case the macro blocks in a section of the image are coded in a first intra-coding mode depending on predetermined criteria. In addition, the macro blocks in a section of the image are coded in a second intra-coding mode or in an inter-coding mode in which case in the inter-coding mode for the macro blocks, movement vectors are selected from the number of accessible reference images. The selection from the number of accessible reference images is limited in such a way that referencing takes place from image areas that were not subjected to the first intra-coding mode at a later stage.