摘要:
An amplifier structure (200) includes a main amplifier loop (203) for efficiently amplifying an input signal at a power amplifier (228) coupled to a load susceptible to impedance variations. The amplifier structure (200) includes a DC correction circuit (214) for detecting and correcting misadjustments in the amplifier (200) in order to eliminate DC offset associated therewith.
摘要:
A linear transmitter (100), which utilizes closed loop feedback to maintain its linearity, employs a method for reducing off-channel interference produced by the linear transmitter (100). A dynamically alterable parameter source (DAPS, 126) is provided to the linear transmitter (100). The DAPS (126) is then used to adjust at least one loop parameter of the closed loop feedback such that off-channel interference is reduced.
摘要:
An amplifier structure (200) includes a main amplifier loop (203) for efficiently amplifying an input signal at a power amplifier (228) coupled to a load susceptible to impedance variations. The amplifier loop (200) further includes an auxiliary loop (201) coupled to the main loop (201) for simultaneously preventing the power amplifier (228) from operating inefficiently or causing off-channel interference.
摘要:
A linear transmitter includes an amplifier feedback loop for amplifying an input signal at a power amplifier. The feedback loop is operated in an open loop mode when the power amplifier is operating at a first operating point and is operated in a closed loop mode when the power amplifier is operating at a second operating point. The transmitter further includes an auxiliary loop coupled to the amplifier feedback loop that provides phase training for the feedback loop and power leveling when the feedback loop is operating open loop. Open loop phase training and power leveling is done during open loop transmission, without an associated training signal or training period. Stable closed loop operation can commence subsequently providing the higher power amplifier efficiency associated with the second operating point and maintaining off channel interference requirements.
摘要:
The present invention addresses the need for an apparatus and method for controlling the load of a PA, to improve PA efficiency in linear transmitters with isolator elimination (IE) circuitry, that does not require the use of high frequency RF circuitry. The present invention provides a PA load controller (130, 131) that improves the efficiency of a PA (116) by adjusting the PA load using an AGC signal (134), a level set adjustment signal (132), and a signal strength indicator (135), these three signals are readily obtained from continuous gain and phase adjustment circuitry (e.g., 102). The load controller determines a phase of the PA load that minimizes the AGC signal and a phase of the PA load that maximizes the level set adjustment signal. From these determinations, the PA load controller determines a phase of the PA load that improves the efficiency of the PA and adjusts the PA load phase accordingly.
摘要:
Some embodiments are directed to a method and apparatus for performing resource negotiation in a station implementing a direct communication link with at least one other station on an Orthogonal Frequency-Division Multiple Access (OFDMA) data channel. The station scans sub-channels on the data channel for base headers included in predefined position in transmissions sent on the sub-channel. The station then decodes a base header in at least one selected sub-channel to obtain parameters of a channel reservation. The obtained parameters are stored in a channel utilization table. The station selects a resource on the data channel in at least one of time or frequency that the station has observed to be free using information from the channel utilization table. The station then begins a resource negotiation process about the selected resource.
摘要:
A broadband device (105) can detect a proximate narrowband transmission (152) from a narrowband communication device (145). The narrowband transmission (152) can be in close enough proximity (155) to at least one bearer channel of the broadband device (105) to result in interference on the narrowband reception (152) when the broadband device (105) is transmitting and the narrowband communication device (145) is concurrently receiving. Responsive to the detecting, the broadband device (105) can gate a broadband transmission (142) to ensure the broadband transmission (142) does not interfere with the proximate narrowband reception (152). In absence of detecting the narrowband transmission (152), the broadband transmission (142) from the broadband device (105) would not be gated.
摘要:
Systems, methods and apparatus are provided for scheduling resources in Orthogonal Frequency-Division Multiple Access (OFDMA) communication networks for “direct link” or peer-to-peer communications among stations operating therein so that OFDMA resources can be allocated to a transmitter station for a peer-to-peer communication session with a receiver station such that near-far issues caused by peer-to-peer communication are reduced/avoided. The disclosed technologies can prevent peer-to-peer communication links using different sub-channels within the same time slot from creating near-far issues for other receiver stations that are within communication range.
摘要:
An evolved Node B creates or updates peer sets from measured performance information received from one or more stations. The measured performance information includes at least one quality metric associated with a downlink signal sent from the evolved Node B to the one or more stations. The evolved Node B determines excluded timeslots and preferred timeslots based on current resource assignments in each timeslot and based on the peer sets, marks potential resources in an uplink portion of a resource allocation map, and allocates one of the potential resources for peer-to-peer communication between a transmitter station and one or more receiver stations.
摘要:
A method and apparatus for mitigating out of band emissions among user equipment and base stations operating at geographically co-located and spectrally distinct wireless communication systems are provided herein. During operation, a wireless radio will determine potential interferers. Preferably, these interferers comprise user equipment and base stations operating at geographically co-located and spectrally distinct wireless communication systems. Once determined, a channel quality indicator (CQI) will be adjusted accordingly to accommodate for any potential interferer. Because the CQI will take into effect any potential interferer, transmissions to/from the wireless radio will be made more robust, decreasing channel interference.