摘要:
A biofunctionalized nanoelectromechanical device (BioNEMS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEMS device during a binding event is provided. The biofunctionalized nanoelectromechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the mechanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalized nanoelectromechanical devices and a method for utilizing the biofunctionalized nanoelectromechanical device of the present invention are also provided.
摘要:
A biofunctionalized nanoelectromechanical device (BioNEMS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEMS device during a binding event is provided. The biofunctionalized nanoelectromechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the mechanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalized nanoelectromechanical devices and a method for utilizing the biofunctionalized nanoelectromechanical device of the present invention are also provided.
摘要:
A biofunctionalized nanoelectromechanical device (BioNEMS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEMS device during a binding event is provided. The biofunctionalized nanoelectromechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the mechanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalized nanoelectromechanical devices and a method for utilizing the biofunctionalized nanoelectromechanical device of the present invention are also provided.
摘要:
A bioNEMS device comprises a piezoresistive cantilever having flexing legs of which attach the cantilever to a support and a biofunctionalized portion at the tip. A bias current applied to the legs is limited by a maximal acceptable temperature increase at the biofunctionalized tip. The length of the cantilever has a magnitude chosen to minimize background Johnson noise. A catalyzed receptor on the device binds to a ligand whose binding rate coefficient is enhanced. The catalyst lowers the receptor-ligand binding activation energy and is designed by forced evolution to preferentially bind with the ligand. A carrier signal is injected by a magnetic film disposed on the cantilever which is electromagnetically coupled to a source of the carrier signal. A plurality of NEMS fluidicly coupled transducers generate a plurality of output signals from which a collective output signal is derived, either by averaging or thresholding. The NEMS devices are disposed in microfluidic flow channels and fabricated in a membrane. A linking molecule is attached to the tip of the transducer and a fluffball attached to the linking molecule to increase damping.
摘要:
A biofunctionalized nanoelectromechanical device (BioNEMS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEMS device during a binding event is provided. The biofunctionalized nanoelectromechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the mechanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalized nanoelectromechanical devices and a method for utilizing the biofunctionalized nanoelectromechanical device of the present invention are also provided.
摘要:
An outputs signal, v(t), is generated from a bioNEMs transducer and mixed with a reference signal and then filtered to generate a correlator output, r(t). The correlator output is detected to generate a signal u(t) and then determined whether the signal u(t) satisfies a predetermined threshold. If qualified, it is then decided whether the signal u(t) represents a predetermined type of interaction between a free ligand in a fluid in which the NEMS device is immersed and a receptor attached to the transducer. The threshold is the Neyman-Pearson criterion based on a predetermined probability of false detection, Pfa. The interaction may be binding of a free ligand to the receptor or releasing a bound ligand from the receptor by competitive binding with the free ligand. The step of detecting comprises detecting the envelope of the signal, r(t).
摘要:
Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.
摘要:
The present invention relates to the use of fluorescently labeled nucleic acid probes to identify and image analytes in a biological sample. In the preferred embodiments, a probe is provided that comprises a target region able to specifically bind an analyte of interest and an initiator region that is able to initiate polymerization of nucleic acid monomers. After contacting a sample with the probe, labeled monomers are provided that form a tethered polymer. Triggered probes and self-quenching monomers can be used to provide active background suppression.
摘要:
Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof
摘要:
Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.