摘要:
Provided are a computer program product, system, and method for managing caching of extents of tracks in a first cache, second cache and storage device. A determination is made of an eligible track in a first cache eligible for demotion to a second cache, wherein the tracks are stored in extents configured in a storage device, wherein each extent is comprised of a plurality of tracks. A determination is made of an extent including the eligible track and whether second cache caching for the determined extent is enabled or disabled. The eligible track is demoted from the first cache to the second cache in response to determining that the second cache caching for the determined extent is enabled. Selection is made not to demote the eligible track in response to determining that the second cache caching for the determined extent is disabled.
摘要:
Provided are a computer program product, system, and method for managing caching of extents of tracks in a first cache, second cache and storage device. A determination is made of an eligible track in a first cache eligible for demotion to a second cache, wherein the tracks are stored in extents configured in a storage device, wherein each extent is comprised of a plurality of tracks. A determination is made of an extent including the eligible track and whether second cache caching for the determined extent is enabled or disabled. The eligible track is demoted from the first cache to the second cache in response to determining that the second cache caching for the determined extent is enabled. Selection is made not to demote the eligible track in response to determining that the second cache caching for the determined extent is disabled.
摘要:
A method for efficiently using a large secondary cache is disclosed herein. In certain embodiments, such a method may include accumulating, in a secondary cache, a plurality of data tracks. These data tracks may include modified data and/or unmodified data. The method may determine if a subset of the plurality of data tracks makes up a full stride. In the event the subset makes up a full stride, the method may destage the subset from the secondary cache. By destaging full strides, the method reduces the number of disk operations that are required to destage data from the secondary cache. A corresponding computer program product and apparatus are also disclosed herein.
摘要:
A method for efficiently using a large secondary cache is disclosed herein. In certain embodiments, such a method may include accumulating, in a secondary cache, a plurality of data tracks. These data tracks may include modified data and/or unmodified data. The method may determine if a subset of the plurality of data tracks makes up a full stride. In the event the subset makes up a full stride, the method may destage the subset from the secondary cache. By destaging full strides, the method reduces the number of disk operations that are required to destage data from the secondary cache. A corresponding computer program product and apparatus are also disclosed and claimed herein.
摘要:
Input/output (I/O) activity in the multiple tier storage system is monitored to collect statistical information. The statistical information is recurrently transformed into an exponential moving average (EMA) of the I/O activity having a predefined smoothing factor. Data portions in the multiple tier storage system are sorted into buckets of varying temperatures corresponding to the EMA. At least one data migration plan is recurrently generated for matching the sorted data portions to at least one of an available plurality of storage device classes. One data portion sorted into a higher temperature bucket is matched with a higher performance storage device class of the available plurality of storage device classes than another data portion sorted into a lower temperature bucket.
摘要:
Input/output (I/O) activity in the multiple tier storage system is monitored to collect statistical information. The statistical information is recurrently transformed into an exponential moving average (EMA) of the I/O activity having a predefined smoothing factor. Data portions in the multiple tier storage system are sorted into buckets of varying temperatures corresponding to the EMA. At least one data migration plan is recurrently generated for matching the sorted data portions to at least one of an available plurality of storage device classes. One data portion sorted into a higher temperature bucket is matched with a higher performance storage device class of the available plurality of storage device classes than another data portion sorted into a lower temperature bucket.
摘要:
A method of verifying the passage of a data write across a bus is provided including sending the data write from an originator across the bus to a target, counting the number of data entries received at the target with a counter, and transmitting a return echo write from the target across the bus to a return address. The method further includes attaching the counter value to other data associated with the return echo write and polling the return address. The method allows determination of the completion of a data write by comparing the number of data entries included in the data write with the counter value polled from the return address. Alternatively, in a data streaming environment the progress of a data write may be determined by comparing the number of data entries included in the data write at a select point in time with the counter value polled from the return address. Typical data entries which are counted may include, but are not limited to, bytes, words, double words, or similar data quantities.
摘要:
In managing multiprocessor operations, a first processor repetitively reads a cache line wherein the cache line is cached from a line of a shared memory of resources shared by both the first processor and a second processor. Coherency is maintained between the shared memory line and the cache line in accordance with a cache coherency protocol. In one aspect, the repetitive cache line reading occupies the first processor and inhibits the first processor from accessing the shared resources. In another aspect, upon completion of operations by the second processor involving the shared resources, the second processor writes data to the shared memory line to signal to the first processor that the shared resources may be accessed by the first processor. In response, the first processor changes the state of the cache line in accordance with the cache coherency protocol and reads the data written by the second processor. Other embodiments are described and claimed.
摘要:
An apparatus for parity data management receives a write command and write data from a computing device. The apparatus also builds a parity control structure corresponding to updating a redundant disk array with the write data and stores the parity control structure in a persistent memory buffer of the computing device. The apparatus also updates the redundant disk array with the write data in accordance with a parity control map and restores the RAID controller parity map from the parity control structure as part of a data recovery operation if updating the redundant disk array with the write data is interrupted by a RAID controller failure resulting in a loss of the RAID controller parity map. In certain embodiments, the parity control structure is a RAID controller parity map.
摘要:
A method, system and program product save state data in a multi-processor system. A problem in the multi-processor system is detected and a statesave thread is spawned for each processor in the system. Each statesave thread directs a processor, in parallel with the other processors to attempt to identify a component in the system having a status of “incomplete”, indicating that state data of the component remains to be offloaded. When a component having a status of “incomplete” is identified, the processor executes statesave code to offload state data from the identified component. Upon completion of the state data offload from the identified component, the processor changes the status of the component to “complete”. The foregoing processes are repeated until no components are identified in the system having a status of “incomplete”.