摘要:
A multi junction solar cell is provided with a non-alloyed ohmic contact metallization stack by inversion of the top semiconductor layer from n-type to p-type and including the utilization of a tunnel junction. Alternatively, the non-alloyed ohmic contact can be achieved by changing the top semiconductor layer from a higher bandgap material to a lower bandgap material.
摘要:
An “n-on-p” type multijunction solar cell structure is disclosed using an n-type substrate for the epitaxial growth of III-V semiconductor material, wherein a “p-on-n” tunnel junction diode is disposed between the substrate and one or more heteroepitaxial layers of III-V semiconductor materials.
摘要:
Tunnel junctions are improved by providing a rare earth-Group V interlayer such as erbium arsenide (ErAs) to yield a mid-gap state-assisted tunnel diode structure. Such tunnel junctions survive thermal energy conditions (time/temperature) in the range required for dilute nitride material integration into III-V multi-junction solar cells.
摘要:
A semiconductor light detection device fabrication technique is provided in which the cap etch and anti-reflection coating steps are performed in a single, self-aligned lithography module.
摘要:
A semiconductor light detection device fabrication technique is provided in which the cap etch and anti-reflection coating steps are performed in a single, self-aligned lithography module.