摘要:
A multi junction solar cell is provided with a non-alloyed ohmic contact metallization stack by inversion of the top semiconductor layer from n-type to p-type and including the utilization of a tunnel junction. Alternatively, the non-alloyed ohmic contact can be achieved by changing the top semiconductor layer from a higher bandgap material to a lower bandgap material.
摘要:
An “n-on-p” type multijunction solar cell structure is disclosed using an n-type substrate for the epitaxial growth of III-V semiconductor material, wherein a “p-on-n” tunnel junction diode is disposed between the substrate and one or more heteroepitaxial layers of III-V semiconductor materials.
摘要:
Tunnel junctions are improved by providing a rare earth-Group V interlayer such as erbium arsenide (ErAs) to yield a mid-gap state-assisted tunnel diode structure. Such tunnel junctions survive thermal energy conditions (time/temperature) in the range required for dilute nitride material integration into III-V multi-junction solar cells.
摘要:
Photovoltaic cells with one or more subcells are provided with a wide band gap, pseudomorphic window layer of at least 15 nm in thickness and with an intrinsic material lattice constant that differs by at least 1% from an adjacent emitter layer. This window layer has a higher band gap than a window layer with substantially the same intrinsic material lattice constant as the adjacent emitter layer, which increases the light transmission through the window, thereby increasing the current generation in the solar cell. The quality of being pseudomorphic material preserves a good interface between the window and the emitter, reducing the minority carrier surface recombination velocity. A method is provided for building a wide band gap, pseudomorphic window layer of a photovoltaic cell that has an intrinsic material lattice constant that differs by at least 1% from the adjacent emitter layer.
摘要:
Photovoltaic cells with one or more subcells are provided with a wide band gap, pseudomorphic window layer of at least 15 nm in thickness and with an intrinsic material lattice constant that differs by at least 1% from an adjacent emitter layer. This window layer has a higher band gap than a window layer with substantially the same intrinsic material lattice constant as the adjacent emitter layer, which increases the light transmission through the window, thereby increasing the current generation in the solar cell. The quality of being pseudomorphic material preserves a good interface between the window and the emitter, reducing the minority carrier surface recombination velocity. A method is provided for building a wide band gap, pseudomorphic window layer of a photovoltaic cell that has an intrinsic material lattice constant that differs by at least 1% from the adjacent emitter layer.
摘要:
In a solar cell having one or more subcells, at least one subcell is provided with a reverse heterojunction, the reverse heterojunction being formed with an emitter and an adjacent base, wherein the emitter has a band gap that is at least 10 meV lower than that of the adjacent base in order to reduce sheet resistance of the emitter and/or increase the subcell current with minimal effect on the open-circuit voltage. Because of the increase in current, the decrease in emitter sheet resistance, and relatively unchanged open-circuit voltage of the subcell, the efficiency of a solar cell employing one or more subcells with reverse heterojunctions is enhanced.
摘要:
A multilayer window structure for a solar cell comprises one or more layers where the bottom layer has an intrinsic material lattice spacing that is substantially the same as the emitter in the plane perpendicular to the direction of epitaxial growth. One or more upper layers of the window structure has progressively higher band gaps than the bottom layer and has intrinsic material lattice spacing is substantially different than the emitter intrinsic material lattice spacing.
摘要:
In a solar cell having one or more subcells, at least one subcell is provided with a reverse heterojunction, the reverse heterojunction being formed with an emitter and an adjacent base, wherein the emitter has a band gap that is at least 10 meV lower than that of the adjacent base in order to reduce sheet resistance of the emitter and/or increase the subcell current with minimal effect on the open-circuit voltage. Because of the increase in current, the decrease in emitter sheet resistance, and relatively unchanged open-circuit voltage of the subcell, the efficiency of a solar cell employing one or more subcells with reverse heterojunctions is enhanced.
摘要:
A multilayer window structure for a solar cell comprises one or more layers where the bottom layer has an intrinsic material lattice spacing that is substantially the same as the emitter in the plane perpendicular to the direction of epitaxial growth. One or more upper layers of the window structure has progressively higher band gaps than the bottom layer and has intrinsic material lattice spacing is substantially different than the emitter intrinsic material lattice spacing.