摘要:
There is disclosed an adaptive quantization controller for use in a video encoder comprising a base layer circuit for receiving an input stream of video frames and generating compressed base layer video frames suitable for transmission to a streaming video receiver and an enhancement layer circuit for receiving the input stream of video frames and a decoded version of the compressed base layer video frames and generating enhancement layer video data associated with, and allocated to, corresponding ones of the compressed base layer video frames. The adaptive quantization controller receives at least one quantization parameter from the base layer circuit and, in response thereto, determines a corresponding shifting factor for shifting a bit plane associated with the enhancement layer video data. The adaptive quantizaion controller also modifies a data field in the enhancement layer video data to cause the video streaming receiver to assign a higher decoding priority to the shifted bit plane.
摘要:
There is disclosed a video encoder comprising a base layer encoder and an enhancement layer encoder. The base layer encoder receives an input stream of video frames and generates compressed base layer video data suitable for transmission to a streaming video receiver. The enhancement layer encoder receives the input stream of video frames and a decoded version of the compressed base layer video data and generates enhancement layer video data associated with the compressed base layer video data and suitable for transmission to the streaming video receiver. The video encoder also comprises a controller associated with the enhancement layer circuitry for receiving a quantization parameter associated with the base layer video data and determining therefrom at least one all-zero bit plane associated with at least one block of the enhancement layer video data. The controller is capable of causing the enhancement layer circuitry not to transmit the at least one all-zero bit plane to the streaming video receiver.
摘要:
There is disclosed an apparatus for controlling the transmission of enhancement layer video data for use in a video encoder containing a base layer encoder and an enhancement layer encoder. The base layer encoder receives input video frames and generates compressed base layer video frames suitable for transmission at a base layer bit rate to a streaming video receiver. The enhancement layer encoder compares the input video frames and a processed version of the compressed base layer video frames and generates enhancement layer video data suitable for transmission at a modifiable enhancement layer bit rate to the streaming video receiver. The apparatus comprises a base layer parameter monitor for receiving at least one base layer parameter and, in response thereto, modifying an allocation of the enhancement layer video data among corresponding ones of the compressed base layer video frames.
摘要:
A video coding technique having motion compensation for bi-directional predicted frames (B-frames) and predicted frames (P-frames). The video coding technique involves a single-loop prediction-based base layer which includes base layer B- and/or P-frames that are generated from “extended” or “enhanced” base layer reference frames during base layer coding.
摘要:
In a Fine Granular Video encoding system, a method for determining the number of transmission bits of SNR encoded and temporally encoded video data within a frame to balance image quality and object motion is presented. In accordance with the principles of the invention, a number of transmission bits at a known bit-rate for a quality enhanced video frame and a temporal enhanced video frame is determined to balance image quality and object motion smoothness. In one aspect of the invention, the number of bits transmitted in each frame is determined by comparing a ratio of a measure of video encoded information within the quality enhanced video frame and a measure of video encode information within the quality enhanced video frame and the temporally enhanced video frame to a known threshold level. The number of transmission bits in each enhancement layer is then determined using a first method when the ratio is above a known threshold and using a second method otherwise. In a second aspect of the invention, the number of bits is determined by first determining a measure of motion activity and complexity. The number of transmission bits is determined using a first method when the motion activity is below a known measure or the complexity if above a known threshold. Otherwise a second method is used to determine the number of transmission bits in each enhancement layer.
摘要:
This invention provides a system and method to dynamically adapt a wireless link retry limit in real-time according to channel conditions and workload intensity in order to maximize MAC throughput and minimize packet loss. In wireless local area networks (WLANs), such as IEEE 802.11b or a, packets can get lost due to either link error or interface queue overflow. Retry is deployed by a wireless link as a link error protection mechanism to reduce packet loss due to link error. However, an improper configuration of this retry limit (such as too high) may cause more packet loss due to queue overflow than link error. The retry-limit adaptation system and method of this invention strikes a balance between queue drops and link losses. Consequently, it achieves much better network performance in terms of a significant reduction of overall packet loss when compared with situations where the retry limit is statically configured, as recommended by the current standard. For video applications, this dynamic adaptation can be configured in such a way that the video quality for a particular network condition is optimized.
摘要:
A method and device for coding video where a video signal is spatially decomposed into at least two signals of different frequency sub-bands, an individualized motion compensated temporal filtering scheme is applied to each sub-band signal adaptively according to signal contents, and texture coding is applied to each of the motion compensated temporally filtered subband signals adaptively according to the signal content.
摘要:
The invention relates to a method and system for modulating an MPEG-4 FGS compressed video stream for variable-bandwidth transmission. A source of a video stream is provided, and a display having means for generating a control input signal for controlling one or more of video compression, error correction code generation, or symbol constellation mapping. The source video stream is compressed using MPEG-4 FGS compression to generate a compressed output video stream. The video compression is optionally performed based upon the control input signal from the display. Error correction code for the compressed video stream may be added, and its generation and addition may be optionally controlled based upon the control input signal from the display. The resulting video symbols may then be mapped to constellations, with this mapping also optionally controlled based upon the control input signal. The resulting compressed output video stream is then transmitted to the display.
摘要:
A system and method for generating a frequency weighted (FW) matrix for use in a Fine-Granularity-Scalability (FGS) video coding system. The system comprises: a system for plotting the average discrete cosine transform (DCT) residuals versus the zigzag DCT scan line locations for a sample video frame encoded both at a predetermined base layer bit-rate and at approximately three times the predetermined base layer bit-rate; a system for generating the difference plot of DCT residuals versus the zigzag DCT scan line locations for the video frame encoded at both the predetermined base layer bit-rate and at approximately three times the predetermined base layer bit-rate; and a system for matching and normalizing a staircase curve to the average difference plot, wherein the staircase curve values can be further mapped into the weights for the FW matrix.
摘要:
A decoder system having a motion compensation system that scales the processing of B pictures in order to save computational resources. The motion compensation system has a first scaling system that includes comparing a motion vector magnitude of each macroblock in a B picture with a predetermined threshold. A system for performing a routine decoding operation for each macroblock in which the motion vector magnitude is greater than the predetermined threshold and a system for copying a corresponding macroblock from a previous picture for each macroblock in which the motion vector magnitude is less than or equal to the predetermined threshold. A second scaling system that includes calculating an average motion vector magnitude for a first B picture and replacing a next contiguous B picture with the first B picture if the average motion vector magnitude is less than or equal to a predetermined threshold.