摘要:
A method for making 0.25 micron semiconductor chips includes annealing the metal interconnect lines prior to depositing an inter-layer dielectric (ILD) between the lines. During annealing, an alloy of aluminum and titanium forms, which subsequently volumetrically contracts, with the contraction being absorbed by the aluminum. Because the alloy is reacted prior to ILD deposition, however, the aluminum is not constrained by the ILD when it attempts to absorb the contraction of the alloy. Consequently, the likelihood of undesirable void formation in the interconnect lines is reduced. The likelihood of undesirable void formation is still further reduced during the subsequent ILD gapfill deposition process by using relatively low bias power to reduce vapor deposition temperature, and by using relatively low source gas deposition flow rates to reduce flow-induced compressive stress on the interconnect lines during ILD formation.
摘要:
A method for making 0.25-micron semiconductor chips includes annealing the metal interconnect lines prior to depositing an inter-layer dielectric (ILD) between the lines. During annealing, an alloy of aluminum and titanium forms, which subsequently volumetrically contracts, with the contraction being absorbed by the aluminum. Because the alloy is reacted prior to ILD deposition, however, the aluminum is not constrained by the ILD when it attempts to absorb the contraction of the alloy. Consequently, the likelihood of undesirable void formation. in the interconnect lines is reduced. The likelihood of undesirable void formation is still further reduced during the subsequent ILD gapfill deposition process by using relatively low bias power to reduce vapor deposition temperature. and by using relatively low source gas deposition flow rates to reduce flow-induced compressive stress on the interconnect lines during ILD formation.
摘要:
Device leakage due to spacer undercutting is remedied by depositing a B-doped HDP or a BP-doped HDP oxide gap filling layer capable of flowing into undercut regions. Embodiments include depositing a B or BP-doped HDP oxide film containing 4 to 6 wt. % B over closely spaced apart non-volatile transistors and heating during and subsequent to deposition to complete flowing of the B- or BP-HDP oxide into and filling the undercut regions on the sidewall spacers and to densify the B- or BP-HDP oxide.
摘要:
An in-situ deposition method allows for the forming of a dielectric layer suitable for use in forming a conductive path in a semiconductor wafer. The method includes depositing a thin SiO.sub.x N.sub.y stop layer on top of a semiconductor wafer within a chemical vapor deposition (CVD) reactor chamber having a low pressure, maintaining the low pressure following the deposition of the SiO.sub.x N.sub.y stop layer, and then depositing a thick TEOS oxide dielectric layer on the SiO.sub.x N.sub.y stop layer within the CVD reactor chamber. The in-situ deposition process reduces outgassing defects that would normally form at the interface between the SiON stop layer and the TEOS oxide dielectric layer.
摘要翻译:原位沉积方法允许形成适合用于在半导体晶片中形成导电路径的电介质层。 该方法包括在具有低压的化学气相沉积(CVD)反应器室内的半导体晶片的顶部上沉积薄的SiOxNy阻挡层,保持在沉积SiO x N y终止层之后的低压,然后沉积厚的TEOS氧化物 在CVD反应器室内的SiOxNy停止层上的介电层。 原位沉积过程减少了通常在SiON阻挡层和TEOS氧化物介电层之间的界面处形成的除气缺陷。
摘要:
A method of protecting a charge trapping dielectric flash memory cell from UV-induced charging, including fabricating a charge trapping dielectric flash memory cell including a charge trapping dielectric charge storage layer in a semiconductor device; and during processing steps subsequent to formation of the charge trapping dielectric charge storage layer, protecting the charge trapping dielectric flash memory cell from exposure to a level of UV radiation sufficient to deposit a non-erasable charge in the charge trapping dielectric flash memory cell. In one embodiment, the step of protecting is carried out by selecting processes in BEOL fabrication which do not include use, generation or exposure of the semiconductor device to a level of UV radiation sufficient to deposit the non-erasable charge.