摘要:
The use of a tag moiety comprising a biotinylation domain, such as biotin carboxyl carrier protein (BCCP), as a protein folding marker and protein solubility enhancer in the orientated surface capture of products of heterologously expressed genes is described. Methods for increasing the solubility of proteins and determining the folded state of a protein are also disclosed. The uses and methods of the invention can be carried out in a multiplexed manner on more than one protein in the formation of libraries. In addition the nucleic acid molecule encoding the biotinylation domain of the tag moiety can be used to increase the proportion of clones in a library that express the protein of interest.
摘要:
The inventors herein describe methods for the production of a functional human, animal, plant or microbe protein arrays and methods to assay for interactions between the proteins on the array with molecules of interest, for example, using such arrays to determine the in vitro metabolite profile of any drug. Such protein arrays can be used, for example, to assay, in a parallel fashion, the protein products of DNA sequences encoding drug metabolizing enzymes (DMES) to obtain a toxicology profile. Also described herein is a novel DME expression and purification strategy using detergents and not requiring an ultra-centrifugation step.
摘要:
The present invention relates to methods of screening for expression of a soluble candidate protein within an expression library of candidate proteins. The method involves fusing each candidate protein in the library to a peptide substrate and identifying cells that express soluble candidate protein by detecting enzymatic modification of the peptide substrate.
摘要:
The present invention relates to methods of screening for expression of a soluble candidate protein within an expression library of candidate proteins. The method involves fusing each candidate protein in the library to a peptide substrate and identifying cells that express soluble candidate protein by detecting enzymatic modification of the peptide substrate.