摘要:
A liquid crystal panel device comprises a liquid crystal panel having a relatively large area particularly while in use with an automobile dashboard and having a plurality of display sections, a diffusion plate disposed opposing the rear face of the liquid crystal panel for diffusing receiving light rays, a printed circuit board disposed opposing the rear face of the diffusion plate, and a plurality of light emitting members disposed in equally spaced relation to each other on the printed circuit board over the whole region of the liquid crystal panel. A reflection plate is provided between the diffusion plate and the board, and a partition plate corresponding to the display section of the liquid crystal panel is provided. Within a space defined by the diffusion plate, board, reflection plate, and partition plate, the light emitting members consisting of three or four incandescent lamps are disposed.
摘要:
A liquid crystal color display apparatus includes a liquid crystal display panel having a section with transparent electrodes provided with color filters in striped formation and another section with transparent electrodes provided with no color filters, and separate electrode drive circuits for applying a voltage to the electrodes of the former section and another voltage to the electrodes of the latter section, with the intention of achieving little difference of brightness between both sections. The color filters in striped formation are provided in the entire area including display pattern segments having the arrangment of the transparent electrodes and a background area without transparent electrodes, with the intention of equalizing the visibility of unlighted segments and the background.
摘要:
An engine controller capable of optimizing both the air-fuel ratio and the ignition timing to provide HC-minimized performance under the relevant driving conditions (environmental conditions) in order to minimize the amount of HC emitted from an engine at the time of start-up (before catalyst activation) is provided. The engine controller includes: air-fuel ratio control means for controlling the air-fuel ratio to be within a predetermined range (for example, 14.5 to 16.5) when the engine is operated at a certain driving condition (for example, in a state in which the catalyst is not activated such as the time of starting a cooler, or idling time); and ignition timing correction means for correcting the ignition timing to the retard side when the engine is operated at the certain driving condition and the air-fuel ratio is within the predetermined range.
摘要:
An apparatus and a method of control of the engine for separating and detecting the fuel remaining in the engine and in the intake passages before the start of the engine and also detecting the fuel property, and calculating a parameter such as an optimum fuel injection quantity when the engine is started, and thus enabling an efficient exhaust performance and a good running performance to be compatible at start-up. The engine control apparatus has a unit for detecting or estimating a burned fuel quantity of the engine, and a unit for separating and detecting a burned fuel quantity supplied from the fuel injection valve and a burned quantity of fuel other than the fuel supplied from the injection valve.
摘要:
An apparatus and a method of control of the engine for separating and detecting the fuel remaining in the engine and in the intake passages before the start of the engine and also detecting the fuel property, and calculating a parameter such as an optimum fuel injection quantity when the engine is started, and thus enabling an efficient exhaust performance and a good running performance to be compatible at start-up. The engine control apparatus has a unit for detecting or estimating a burned fuel quantity of the engine, and a unit for separating and detecting a burned fuel quantity supplied from the fuel injection valve and a burned quantity of fuel other than the fuel supplied from the injection valve.
摘要:
A knock detection device being provided with a plurality of digital filter units, each is designed to cover respective characteristic resonance vibration frequency components inherent to resonance vibration modes due to knocking and including first, second and third digital filters, the first digital filter being tuned to the center frequency of the characteristic resonance vibration frequency component, the second digital filter being tuned to a neighboring lower frequency and the third digital filter being tuned to a neighboring higher frequency. The maximum intensity among the three intensities determined by the first, second and third digital filters is determined as the intensity for the characteristic resonance vibration frequency component and the determined result is fed-back to the digital filter unit to correct the center frequency of the first digital filter to the frequency showing the maximum intensity, whereby the knocking is reliably detected without being affected by such factors as engine operating conditions and secular changes of the engine.
摘要:
There are provided a first ignition timing table for high-octane fuel and a second ignition timing table for low-octane fuel. When the second table is switched over to the first table, there is at first the difference in between basic ignition timings according to the first and second tables, and then the difference is reduced with time at a constant rate. An actual ignition timing during the switchover of an ignition timing table is determined by subtracting the reducing difference from the basic ignition timing according to the first table. The actual ignition timing when knocking is detected is compared with a predetermined threshold. If the former exceeds the latter, the second table is switched over to the first table, and otherwise the second table is maintained, whereby the actual ignition timing can be changed smoothly even during the switchover of an ignition timing table.
摘要:
An engine control apparatus for controlling the amount of the air flowing into each cylinder in accordance with the amount of the fuel flowing into the cylinder at the time of starting the engine is disclosed. Further, at the engine starting time, the target amount of the air flowing into the cylinder is calculated and/or the amount of the air flowing into the cylinder is controlled, based on the amount of the fuel flowing into the cylinder. The amount of the fuel remaining in the neighborhood of the engine intake port or in the intake pipe is calculated by being separated into a balanced liquid film amount and unbalanced liquid film amount. Based on the unbalanced liquid film amount, the injection fuel amount is corrected so that the amount of the fuel flowing into the cylinder is controlled with high accuracy.
摘要:
An engine control system for an internal combustion engine with a fuel injector, comprises a combustion fuel quantity computing means for computing a combustion fuel quantity in a combustion cycle; and a residual fuel quantity computing means for computing a residual fuel quantity in the combustion cycle based on a difference between an injection fuel quantity of the fuel injector and the combustion fuel quantity.
摘要:
Exhaust emission control is exercised to restrict the exhaust amounts [g] of HC, CO, NOx, and the like. However, since the intake air amount for startup unduly increases due to an engine speed overshoot for startup, the exhaust amounts of HC, CO, and NOx increase excessively. Therefore, there is a need for optimizing the intake air amount for startup. The present invention proposes an engine startup control method that assures excellent startability and low exhaust emissions (small gas amount). Disclosed is an engine control device for starting an engine (from its stop state). The engine control device includes a section for setting a target engine operating state of each combustion; a section for detecting an actual engine operating state of each combustion; and a section for computing a control parameter for each subsequent combustion in accordance with the target engine operating state of each combustion and the actual engine operating state of each combustion.