摘要:
Dehydrin- and late embryogenic abundant (LEA) protein-encoding polynucleotides from coffee plants are disclosed. Also disclosed are a promoter sequence from a coffee dehydrin gene, and methods for using these polynucleotides and promoter sequences for gene regulation and manipulation of flavor, aroma, stress tolerance and other features of coffee beans.
摘要:
Dehydrin- and late embryogenic abundant (LEA) protein-encoding polynucleotides from coffee plants are disclosed. Also disclosed are a promoter sequence from a coffee dehydrin gene, and methods for using these polynucleotides and promoter sequences for gene regulation and manipulation of flavor, aroma, stress tolerance and other features of coffee beans.
摘要:
Disclosed herein are nucleic acid molecules isolated from coffee (Coffea spp.) comprising sequences that encode mannan synthase or galactomannan galactosyltransferase. Also disclosed are methods for using these polynucleotides for gene regulation and manipulation of the polysaccharide molecules of coffee plants, to influence extraction characteristics and other features of coffee beans.
摘要:
Disclosed herein are nucleic acid molecules isolated from coffee (Coffea spp.) comprising sequences that encodes various sucrose metabolizing enzymes, along with their encoded proteins. Specifically, three types of invertase and four invertase inhibitors and their encoding polynucleotides from coffee are disclosed. Also disclosed are methods for using these polynucleotides for gene regulation and manipulation of the sugar profile of coffee plants, to influence flavor, aroma, and other features of coffee beans.
摘要:
The present invention relates to isolated polynucleotides encoding cysteine proteinases; cysteine proteinase inhibitors; and aspartic endoproteinases. The invention also relates to a transformed host cell, preferably a plant cell, in which over- or under-expression of these polynucleotides result in altered levels of coffee flavor precursor levels, specifically, amino group-containing molecules such as amino acids, peptides and proteins, in green coffee grains.
摘要:
The present invention relates to isolated polynucleotides encoding cysteine proteinases; cysteine proteinase inhibitors; and aspartic endoproteinases. The invention also relates to a transformed host cell, preferably a plant cell, in which over- or under-expression of these polynucleotides result in altered levels of coffee flavour precursor levels, specifically, amino group-containing molecules such as amino acids, peptides and proteins, in green coffee grains.
摘要:
Polynucleotides encoding polypeptides that comprise the biosynthetic pathway for lignins in the coffee plant are disclosed. Also disclosed are methods for using these polynucleotides and polypeptides for the manipulation of flavor, aroma, and other features of coffee beans, as well as the manipulation resistance to pathogen, herbivore, and insect attack in the coffee plant.
摘要:
Disclosed herein are nucleic acid molecules isolated from coffee (Coffea spp.) comprising sequences that encodes various sucrose metabolizing enzymes, along with their encoded proteins. Specifically, sucrose synthase, sucrose phosphate synthase and sucrose phosphatase enzymes and their encoding polynucleotides from coffee are disclosed. Also disclosed are methods for using these polynucleotides for gene regulation and manipulation of the sugar profile of coffee plants, to influence flavor, aroma, and other features of coffee beans.
摘要:
Disclosed herein are nucleic acid molecules isolated from coffee (Coffea spp.) comprising sequences that encodes various sucrose metabolizing enzymes, along with their encoded proteins. Specifically, three types of invertase and four invertase inhibitors and their encoding polynucleotides from coffee are disclosed. Also disclosed are methods for using these polynucleotides for gene regulation and manipulation of the sugar profile of coffee plants, to influence flavor, aroma, and other features of coffee beans.
摘要:
Disclosed herein are nucleic acid molecules isolated from coffee (Coffea spp.) comprising sequences that encodes various sucrose metabolizing enzymes, along with their encoded proteins. Specifically, sucrose synthase, sucrose phosphate synthase and sucrose phosphatase enzymes and their encoding polynucleotides from coffee are disclosed. Also disclosed are methods for using these polynucleotides for gene regulation and manipulation of the sugar profile of coffee plants, to influence flavor, aroma, and other features of coffee beans.