摘要:
The present invention relates to a method for preparing aldehydes by reacting olefins with a synthesis gas including carbon monoxide and hydrogen, and to an apparatus therefore. More particularly, the present invention relates to a method for preparing aldehydes, characterized by spraying and supplying olefins, synthesis gas including carbon monoxide and hydrogen, and a catalyst composition into an oxo reactor through a nozzle, and to an apparatus therefore. According to the present invention, the hydroformylation efficiency can be improved, thereby obtaining desirable aldehydes with a high yield.
摘要:
The present invention relates to a method for preparing aldehydes by reacting olefins with a synthesis gas including carbon monoxide and hydrogen, and to an apparatus therefore. More particularly, the present invention relates to a method for preparing aldehydes, characterized by spraying and supplying olefins, synthesis gas including carbon monoxide and hydrogen, and a catalyst composition into an oxo reactor through a nozzle, and to an apparatus therefore. According to the present invention, the hydroformylation efficiency can be improved, thereby obtaining desirable aldehydes with a high yield.
摘要:
The present invention relates to a method for preparing aldehydes by reacting olefins with a synthesis gas including carbon monoxide and hydrogen, and to an apparatus therefore. More particularly, the present invention relates to a method for preparing aldehydes, characterized by spraying and supplying olefins, synthesis gas including carbon monoxide and hydrogen, and a catalyst composition into an oxo reactor through a nozzle, and to an apparatus therefore. According to the present invention, the hydroformylation efficiency can be improved, thereby obtaining desirable aldehydes with a high yield.
摘要:
Disclosed is a hydroformylation method having improved catalyst stability in a reaction. Advantageously, provided is a hydroformylation method in which a specific α,β-unsaturated carbonyl compound is incorporated during a hydroformylation reaction to prevent alkyl phosphite decomposed from a phosphite ligand from acting as a catalyst poison, thereby improving a yield of reaction and inhibiting decomposition of ligand and catalyst.
摘要:
Disclosed is a hydroformylation method having improved catalyst stability in a reaction. Advantageously, provided is a hydroformylation method in which a specific α,β-unsaturated carbonyl compound is incorporated during a hydroformylation reaction to prevent alkyl phosphite decomposed from a phosphite ligand from acting as a catalyst poison, thereby improving a yield of reaction and inhibiting decomposition of ligand and catalyst.
摘要:
The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.
摘要:
The present invention relates to an apparatus for producing alcohols from olefins, comprising: a hydroformylation reactor wherein aldehydes are produced from olefins; a catalyst/aldehydes separator; a hydrogenation reactor wherein the aldehydes are hydrogenated to produce alcohols; and a distillation column. The hydroformylation reactor is equipped with a distributor plate, which has a broad contact surface for providing sufficient reaction area for reactants such as olefins and synthesis gas, and allows the reaction mixture to circulate and mix sufficiently, which contribute to excellent efficiency in terms of production of aldehydes. In addition, the hydrogenation reactor suppresses sub-reactions to improve the production yield of alcohols.
摘要:
The present invention relates to an apparatus for producing alcohols from olefins, comprising: a hydroformylation reactor wherein aldehydes are produced from olefins; a catalyst/aldehydes separator; a hydrogenation reactor wherein the aldehydes are hydrogenated to produce alcohols; and a distillation column. The hydroformylation reactor is equipped with a distributor plate, which has a broad contact surface for providing sufficient reaction area for reactants such as olefins and synthesis gas, and allows the reaction mixture to circulate and mix sufficiently, which contribute to excellent efficiency in terms of production of aldehydes. In addition, the hydrogenation reactor suppresses sub-reactions to improve the production yield of alcohols.
摘要:
The present invention relates to an apparatus for coproducting iso-type reaction product and alcohol from olefin, and a method for coproducting using the apparatus, in which the hydroformylation reactor provides a sufficient reaction area due to the broad contact surface area between the olefin and the synthesis gases that are the raw materials by a distributor plate installed in the reactor, and the raw materials can be sufficiently mixed with the reaction mixture due to the circulation of the reaction mixture so that the efficiency of the production of the aldehyde is excellent; and also the hydrogenation reactor suppresses the side reaction so that the efficiency for producing aldehyde and alcohol are all increased, and also iso-type reaction product and alcohol can be efficiently co-produced.
摘要:
Disclosed is a method for producing 1,3-butadiene through oxidative dehydrogenation of normal-butene using a parallel reactor in which catalysts are charged into fixed bed reactors and are not physically mixed. More specifically, disclosed is a method for efficiently producing 1,3-butadiene through oxidative dehydrogenation of normal-butene using the parallel reactor containing multi-component bismuth molybdate-based catalysts exhibiting different activities to oxidative dehydrogenation for normal-butene isomers (1-butene, trans-2-butene and cis-2-butene), and butene separated from a C4 mixture containing normal-butene and normal-butane, as a reactant.