摘要:
A process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream comprising n-butenes; B) feeding the input gas stream comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream; Ca) cooling the product gas stream by contacting with a circulating cooling medium in at least one cooling zone; Cb) compressing the cooled product gas stream in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4 product stream d1 by extractive distillation; F) distilling the stream e1 into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene; G) removing a portion of the aqueous phase of the cooling medium which circulates in step Ca) as aqueous purge stream g; H) distillatively separating the aqueous purge stream g into a fraction h1 and a fraction h2 depleted of organic constituents.
摘要:
The present invention relates to a bismuth molybdate-based composite oxide catalyst having a microporous zeolite coating layer on the surface thereof and thus having high selectivity for 1,3-butadiene, a method of preparing the same, and a method of preparing 1,3-butadiene using the same. The catalyst has a microporous zeolite coating layer, and thus enables only gaseous products (light) to selectively pass through the zeolite coating layer, improving selectivity for 1,3-butadiene.
摘要:
An object of the present invention is to provide an oxide catalyst that prevents the reduction degradation of the catalyst even during industrial operation for a long time and less reduces unsaturated aldehyde yields, diolefin yields, or unsaturated nitrile yields, and a method for producing the same, and methods for producing unsaturated aldehyde, diolefin, and unsaturated nitrile using the oxide catalyst. The present invention provides an oxide catalyst for use in the production of unsaturated aldehyde, diolefin, or unsaturated nitrile from olefin and/or alcohol, the oxide catalyst satisfying the following (1) to (3): (1) the oxide catalyst comprises molybdenum, bismuth, iron, cobalt, and an element A having an ion radius larger than 0.96 Å (except for potassium, cesium, and rubidium); (2) an atomic ratio a of the bismuth to 12 atoms of the molybdenum is 1≦a≦5, an atomic ratio b of the iron to 12 atoms of the molybdenum is 1.5≦b≦6, an atomic ratio c of the element A to 12 atoms of the molybdenum is 1≦c≦5, and an atomic ratio d of the cobalt to 12 atoms of the molybdenum is 1≦d≦8; and (3) the oxide catalyst comprises a disordered phase consisting of a crystal system comprising the molybdenum, the bismuth, the iron, and the element A.
摘要:
The invention relates to a method for the oxidative dehydrogenation of ethane. The inventive method is characterized in that it consists of bringing the ethane into contact with the catalyst containing Mo, Te, V, Nb and at least a fifth element A which is selected from Cu, Ta, Sn, Se, W, Ti, Fe, Co, Ni, Cr, Zr, Sb, Bi, an alkali metal, an alkaline-earth metal and a rare earth, in which at least Mo, Te, V and Nb are present in the form of at least one oxide, said catalyst presenting, in calcined form, an X-ray diffractogram with more than ten intense diffraction lines, typically, the most intense lines corresponding to diffraction angles 2Θ of 7.7°±0.4, 8.9°±0.4, 22.1°+0.4, 26.6°±0.4, 26.9°±0.4, 27.1°±0.4, 28.1°±0.4, 31.2°±0.4, 35.0°±0.4 and 45.06°±0.
摘要:
The present invention relates to a bismuth molybdate-based composite oxide catalyst having a microporous zeolite coating layer on the surface thereof and thus having high selectivity for 1,3-butadiene, a method of preparing the same, and a method of preparing 1,3-butadiene using the same. The catalyst has a microporous zeolite coating layer, and thus enables only gaseous products (light) to selectively pass through the zeolite coating layer, improving selectivity for 1,3-butadiene.
摘要:
Disclosed are a catalyst composition for oxidative dehydrogenation and a method of preparing the same. More particularly, disclosed is a catalyst composition comprising a multi-ingredient-based metal oxide catalyst and a mixed metal hydroxide. The catalyst composition and the method of preparing the same according to the present disclosure may prevent loss occurring in a filling process due to superior mechanical durability and wear according to long-term use, may inhibit polymer formation and carbon deposition during reaction, and may provide a superior conversion rate and superior selectivity.
摘要:
The invention provides process for oxidative dehydrogenation of lower alkanes, by vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of a catalyst and molecular oxygen to produce the corresponding olefins, in which the catalyst has a composition expressed by a general formula (1) below: A&agr;Sb&bgr;W&ggr;D&dgr;Ox (1) in which A is at least one metal selected from the group consisting of molybdenum and chromium; Sb is antimony; W is tungsten; O is oxygen; and D is at least one metal selected from the group consisting of V, Nb, Ta, Fe, Co, Ni, Cu, Ag, Zn, B, Tl, Sn, Pb, Te, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce and Sm; &agr;, &bgr;, &ggr;, &dgr; and x denote atomic numbers of A, Sb, W, D and O, respectively, where when &agr;=1, &bgr;=0.5-10, &ggr;=0.1-10 and &dgr;=0-3; and x is a numerical value determined by the state of oxidation of those elements other than oxygen. When these catalysts are used in reactions for oxidizing and dehydrogenating C2-C5 alkanes with molecular oxygen in vapor phase, corresponding olefins can be produced at high yield.
摘要:
Bismuth cerium molybdate catalysts promoted with alkali metal and other optional ingredients provide high yields of acrylonitrile in the ammoxidation of propylene.
摘要:
The invention, in one aspect, is a process for preparing a (methyl-substituted)diphenyl methane by coupling at least (including benzene) a methyl-substituted benzene into the (methyl-substituted)diphenyl methane comprising contacting at least the methyl-substituted benzene with a solid heterogeneous reactant-catalyst having labile oxygen under conditions whereby the (methyl-substituted)diphenyl methane is prepared. For example, using molybdenum trioxide or vanadium pentoxide, toluene can be coupled in the vapor or liquid phase to prepare (2-methylphenyl)phenylmethane. By-product formation, especially formation of carbon dioxide, can be very low.
摘要:
A method for producing diene comprises a step 1 of obtaining a straight chain internal olefin by removing a branched olefin from a raw material including at least the branched olefin and a straight chain olefin; and a step 2 of producing diene from the internal olefin by oxidative dehydrogenation using a first catalyst and a second catalyst, and the first catalyst has a complex oxide including bismuth, molybdenum and oxygen, and the second catalyst includes at least one selected from the group consisting of silica and alumina.