摘要:
Provided is a treatment apparatus including a target material for generating protons. The treatment apparatus includes a cylindrical bore member having an inner space to receive a patient; a proton generating target material provided to an inner surface of the bore member; and a laser adapted to supply a laser beam to the proton generating target material so that protons are generated from the proton generating target material and projected to a tumor site of the patient. The proton generating target material includes a supporting film and a hydrogenated amorphous silicon (a-Si:H) film provided on the supporting film.
摘要:
A treatment apparatus using proton includes a proton generation unit and a magnet. The proton generation unit projects proton into a tumor site of a patient, and the magnet forms a magnetic field around the patient. The proton conducts a spiral motion due to collision with atom of the tumor site and Lorenz force generated by the magnetic field.
摘要:
Provided are a carbon ion generating device and a tumor treatment apparatus using the same. The carbon ion generating device includes a carbon nanostructure, a carbon emitting structure, an ionizing structure, and an accelerator. The carbon emitting structure is configured to induce an emission of carbon atoms from one end of the carbon nanostructure. The ionizing structure is configured to ionize the emitted carbon atoms. The accelerator is configured to accelerate the ionized carbon atoms.
摘要:
A treatment apparatus using proton includes a proton generation unit and a magnet. The proton generation unit projects proton into a tumor site of a patient, and the magnet forms a magnetic field around the patient. The proton conducts a spiral motion due to collision with atom of the tumor site and Lorenz force generated by the magnetic field.
摘要:
Provided are a carbon ion generating device and a tumor treatment apparatus using the same. The carbon ion generating device includes a carbon nanostructure, a carbon emitting structure, an ionizing structure, and an accelerator. The carbon emitting structure is configured to induce an emission of carbon atoms from one end of the carbon nanostructure. The ionizing structure is configured to ionize the emitted carbon atoms. The accelerator is configured to accelerate the ionized carbon atoms.
摘要:
Provided are a carbon ion generation target and a treatment apparatus including the same. The treatment apparatus includes a support member, a carbon ion generation target fixed to the support member, and a laser for irradiating laser beam into the carbon ion generation target to generate carbon ions from the carbon ion generation target, thereby projecting the carbon ions onto a tumor portion of a patient. Here, the carbon ion generation target includes a substrate and carbon thin films disposed on the substrate.
摘要:
A minimally invasive particle beam cancer therapy apparatus that can be inserted into the body and deliver a particle beam onto a cancer cell generated in the body. The minimally invasive particle beam cancer therapy apparatus may include: a particle beam delivery system delivering a particle beam onto a diseased part formed inside a therapy subject, the particle beam delivery system being partially inserted into the therapy subject when delivering the particle beam; a medical apparatus body shaped like a pipe having a predetermined length and physically connected to the particle beam delivery system, the medical apparatus being partially inserted into the therapy subject in a longitudinal direction along with the particle beam delivery system being partially inserted into the therapy subject to help the insertion of the particle beam delivery system into the therapy subject; and a control system controlling a driving operation of the particle beam delivery system.
摘要:
The present invention relates to a coil arrangement and a moving field electromagnetic machine using same, the coil arrangement being characterized by comprising a first coil arrangement and a second coil arrangement that are formed spaced a predetermined distance apart from each other and have a mirror image in the spaced apart direction, wherein: the first coil arrangement includes at least one first half cycle and at least one second half cycle that are formed adjacent to each other; the first half cycle includes at least two coils having currents flowing in different directions; and the first half cycle and the second half cycle have a mirror image in the direction in which the first and second half cycles are adjacent, thereby maximizing efficiency and increasing power by minimizing the magnetic flux leakage and the core loss.
摘要:
The present invention relates to an electromagnetic machine comprising: rotation shaft; a stator comprising a multi-phase winding wire; a mover (rotor 1) comprising the multi-phase winding wire and spaced apart from the stator at a preset interval; and a controller for independently controlling a first magnetic field of the stator and a second magnetic field of the mover (rotor 1). The electromagnetic machine according to the present invention can resolve, by means of the mover (rotor 1) and the wound-type stator that can be independently and actively controlled, a torque issue at start-up or when needed and, thereby, has the effects of producing a maximum driving torque while having a minimum size, and of maximizing efficiency.
摘要:
The present invention relates to a coil arrangement and a moving field electromagnetic machine using same, the coil arrangement being characterized by comprising a first coil arrangement and a second coil arrangement that are formed spaced a predetermined distance apart from each other and have a mirror image in the spaced apart direction, wherein: the first coil arrangement includes at least one first half cycle and at least one second half cycle that are formed adjacent to each other; the first half cycle includes at least two coils having currents flowing in different directions; and the first half cycle and the second half cycle have a mirror image in the direction in which the first and second half cycles are adjacent, thereby maximizing efficiency and increasing power by minimizing the magnetic flux leakage and the core loss.