摘要:
Provided are a device for storing a reagent capable of being adhered to a biochip and supplying the stored reagent to the biochip, and a method of discharging a reagent thereof. The device for storing a reagent includes an elastic film pressurizing part configured to pressurize an elastic film by magnetic force, and a reagent discharging part configured to store the reagent and discharge the reagent through an outlet by using the deformation in the elastic film due to the pressurization. According to the present invention, a magnetic force controlling device can be small-sized and the reagent can be automatically, high-precisely, and reproducibly supplied through the magnetic force control.
摘要:
Provided is a method for quantitatively detecting biomolecules with high sensitivity for a short time by using nanoparticles and a metal deposition method in an immuno-detection using a well-type plastic substrate.
摘要:
A semiconductor laser apparatus is provided which can vary an output wavelength of a light source. A semiconductor laser diode and one or more heat source devices arranged around the semiconductor laser diode are integrated on one substrate. The semiconductor laser diode is configured to be uniformly heated by the heat source device. An output wavelength of the semiconductor laser diode can be easily and quickly varied.
摘要:
Provided are a biosensor and a method of driving the same. The biosensor includes a transistor including a substrate including a source, a drain, and a channel formed between the source and the drain, a gate insulating layer formed on the channel, and a source electrode and a drain electrode respectively connected with the source and the drain, a fluid line for covering the transistor to have an inner space together with the transistor and in which a sample solution including target molecules flows, a reference electrode formed on an inner wall of the fluid line, and a probe molecule layer attached on the reference electrode and reacting with the target molecules. Accordingly, the reference electrode is formed on the inner wall of the fluid line, enabling miniaturization of the bio device. Also, the probe molecules are formed on the reference electrode to measure a change in threshold voltage according to a change in electric potential between the reference electrode and the gate insulating layer, such that the sensitivity and reaction rate can be remarkably improved.
摘要:
A silicon light emitting diode capable of effectively utilizing light radiated toward the lateral side of a substrate by including a side reflecting mirror is provided. The silicon-based light emitting diode includes a p-type silicon substrate having a plurality of grooves, a light emitting diode layer formed on each of the grooves of the silicon substrate, the light emitting diode layer including an active layer, an n-type doped layer, and a transparent electrode layer, and a metal electrode including a lower metal electrode formed on the bottom surface of the p-type silicon substrate and an upper metal electrode formed on the top surface of the transparent electrode layer. The lateral surface of each of the grooves is separated from the light emitting diode layer and used as a reflecting mirror. The lateral surface is referred to as the side reflecting mirror.
摘要:
Provided is a filtering device including a filter part having a plurality of filters stacked to filter contaminants in fluid, and a sample part disposed on an outer plane of the filter part and having a plurality of samples corresponding to the filters, respectively. Therefore, a filter exchange period can be accurately determined by measuring properties of the filter varied during filtering of contaminants, and indiscriminate exchange of the filters can be prevented to reduce maintenance cost.
摘要:
Provided are a biosensor and a method for detecting biomolecules by using the biosensor. The biosensor includes a detection unit and a fluid channel. The detection unit is disposed on a substrate and has a surface to which detection target molecules binding specifically to probe molecules are immobilized. The fluid channel is configured to provide an analysis solution containing the probe molecules to the detection target molecules. The probe molecules bind specifically to the target molecules and the detection target molecules.
摘要:
Provided is a bio-sensor chip. The bio-sensor chip includes a sensing part, a board circuit part, a channel part, and a cover. In the sensing part, a target material and a detection material interact with each other to detect the target material. The board circuit part is electrically connected to the sensing part. The channel part provides a solution material containing the target material into the sensing part. The cover is coupled to the board circuit part to cover the channel part and the sensing part.
摘要:
Provided are a method of manufacturing a semiconductor nanowire sensor device and a semiconductor nanowire sensor device manufactured according to the method. The method includes preparing a first conductive type single crystal semiconductor substrate, forming a line-shaped first conductive type single crystal pattern from the first conductive type single crystal semiconductor substrate, forming second conductive type epitaxial patterns on both sidewalls of the first conductive type single crystal pattern, and forming source and drain electrodes at both ends of the second conductive type epitaxial patterns.
摘要:
Provided is a highly efficient silicon-based light emitting diode (LED) including a Distributed Bragg Reflector (DBR), an n-type doping layer, and a p-type substrate structure. The silicon-based LED includes: a substrate having a p-type mesa substrate structure; an active layer that is formed on the substrate and has a first surface and a second surface opposite the first surface; a first reflective layer facing the first surface of the active layer; a second reflective layer that is located on either side of the p-type substrate structure and faces the second surface of the active layer; an n-type doping layer sandwiched between the active layer and the first reflective layer; a first electrode electrically connected to the n-type doping layer; and a second electrode electrically connected to the p-type substrate structure.