摘要:
Provided is a novel fluorene derivative which is useful as a catalyst component for olefin polymerization, a transition metal compound containing the fluorene derivative as a part of ligand, a catalyst for olefin polymerization containing the transition metal compound, and a process for producing olefin polymer. The fluorene derivative is characterized by being represented by the following general formula [I]: wherein R1, R2, R3, R5, R6, R7, R8, R9, R10, R11, R12, and R14 are each selected from hydrogen, a hydrocarbon group, and a silicon-containing group, and may be the same as or different from each other, R4 and R13 are each selected from hydrogen, a hydrocarbon group, a silicon-containing group, a sulfur-containing group, an oxygen-containing group, a nitrogen-containing group, and a halogen-containing group, and may be the same as or different from each other, and adjacent substituents of R1 to R14 may be bonded to each other to form a ring, except that the case where R4 and R5, and R12 and R13 are each bonded to each other to form a vinylene group. Also provided is a bridged metallocene compound having both of the skeleton and a cyclopentadiene skeleton.
摘要:
Provided is a transition metal compound novel and useful as a catalyst component for olefin polymerization, a catalyst for olefin polymerization containing the transition metal compound, and a process for producing an olefin polymer using the catalyst for polymerization. The transition metal is characterized by being represented by the following general formula [I]: wherein, R3 is hydrogen, R2 is selected from a hydrocarbon group or a silicon-containing group, R1 and R4 are selected from a hydrocarbon group having 2 to 20 carbon atoms and a silicon-containing group, each of R5, R6, R7, R8, R9, R10, R11, R12, R13 and R14, which is selected from hydrogen, a hydrocarbon group and a silicon-containing group, may be same or different from each other, and adjacent groups from R5 to R14 may be bonded to each other to form a ring. M is a Group 4 transition metal, Y is a carbon atom, Q may be selected from halogen, a hydrocarbon group, an anionic ligand and a neutral ligand capable of coordinating with a lone electron pair, which may be selected in the same combination or different combination, and j is an integer of 1 to 4.
摘要:
Provided is a transition metal compound represented by the general formula [III]: wherein R23, R24, R25, R26, R27, and R28 are each independently selected from hydrogen, a hydrocarbon group, a silicon-containing group, a sulfur-containing group, an oxygen-containing group, a nitrogen-containing group, and a halogen-containing group, adjacent substituents of R23 to R28 are optionally bonded to each other to form a ring, M is a Group 4 transition metal, Y is carbon atom, Q is selected from halogen, a hydrocarbon group, an anionic ligand and a neutral ligand capable of coordinating with a lone electron pair, which is selected in the same combination or different combination, j is an integer of 1 to 4, and Z is a fluorenylidene group comprising a fluorene derivative formula [I] or formula [II]
摘要:
Provided is a transition metal compound novel and useful as a catalyst component for olefin polymerization, a catalyst for olefin polymerization containing the transition metal compound, and a process for producing an olefin polymer using the catalyst for polymerization. The transition metal is characterized by being represented by the following general formula [I]: wherein, R3 is hydrogen, R2 is selected from a hydrocarbon group or a silicon-containing group, R1 and R4 are selected from a hydrocarbon group having 2 to 20 carbon atoms and a silicon-containing group, each of R5, R6, R7, R8, R9, R10, R11, R12, R13 and R14, which is selected from hydrogen, a hydrocarbon group and a silicon-containing group, may be same or different from each other, and adjacent groups from R5 to R14 may be bonded to each other to form a ring. M is a Group 4 transition metal, Y is a carbon atom, Q may be selected from halogen, a hydrocarbon group, an anionic ligand and a neutral ligand capable of coordinating with a lone electron pair, which may be selected in the same combination or different combination, and j is an integer of 1 to 4.
摘要:
A propylene polymer which is constituted of 10 to 40 wt % room-temperature n-decane soluble part (Dsol) and 60 to 90 wt % room-temperature n-decane insoluble part (Dinsol), comprises skeletons derived from propylene (MP) and at least one kind of olefin (MX) selected from ethylene and C4 or more α-olefins, and satisfies all of the following requirements [1] to [5]. The polymer is characterized by having a high melting point and a high molecular weight and is suitable for use in producing various moldings therefrom. [1] the molecular weight distribution (Mw/Mn) of both Dsol and Dinsol as determined by GPC is 4.0 or less; [2] the melting point (Tm) of Dinsol is 156° C. or more; [3] the sum of the 2,1-bond content and the 1,3-bond content in Dinsol is 0.05 mol % or less; [4] the intrinsic viscosity [η] (dl/g) of Dsol satisfies the relationship 2.2
摘要翻译:丙烯聚合物由10〜40重量%的室温正癸烷可溶部分(D> sol)和60〜90重量%的室温正癸烷不溶部分(D&lt; 包括衍生自丙烯(MP)的骨架和选自乙烯和C 4或更多α-烯烃的至少一种烯烃(MX),并且满足以下所有要求[1]至[5] 。 聚合物的特征在于具有高熔点和高分子量,并且适用于从其生产各种模制品。 [1]通过GPC测定的D&amp; S&gt;和D&amp; S&gt;两者的分子量分布(Mw / Mn)为4.0以下; [2] D SUB>的熔点(Tm)为156℃以上; [3] D insol中的2,1-键含量和1,3-键含量的总和为0.05摩尔%以下; [4] D SUB>的特性粘度η(dl / g)满足关系式2.2 <η<6.0; 和[5]衍生自D insol中的烯烃(MX)的骨架的浓度为3.0重量%以下。
摘要:
A high molecular weight propylene polymer exhibiting high stereoregularity (isotactic) and high position selectivity can be effectively produced by polymerizing at least one monomer selected from propylene, α-olefins and polyenes in the presence of a catalyst for olefin polymerization comprising: (A) a bridged metallocene compound represented by the General Formula [I] given in claims (diphenylmethylene(3-tert-butyl-5-ethyl-cyclopentadienyl)(fluorenyl)zirconium dichloride, etc.); and (B) one or more compound(s) selected from (b-1) an organoaluminumoxy compound (b-2) a compound which reacts with the bridged metallocene compound (A) to form an ion pair, and (b-3) an organoaluminum compound.
摘要:
A propylene elastomer (PBER) comprising (a) 50 to 85 mol % of units derived from propylene, (b) 5 to 25 mol % of units derived from 1-butene and (c) 10 to 25 mol % of units derived from ethylene, and having a molar ratio of propylene content to ethylene content of from 89/11 to 70/30, and a modulus in tension (YM), as measured in accordance with JIS 6301, of not more than 40 Mpa.
摘要:
A polypropylene composition containing a propylene/1-butene random copolymer which contains 60 to 90 mol % of propylene units and 10 to 40 mol % of 1-butene units and has a triad isotacticity of not less than 85% and not more than 97.5%, a molecular weight distribution of from 1 to 3, an intrinsic viscosity of from 0.1 to 12 dl/g, a melting point of from 40 to 75° C. and a crystallization rate at 45° C. of 10 minutes or less, and satisfying the following relation, 146 exp (−0.022M)≧Tm≧125 exp (−0.032M), and an olefin catalyst for preparation thereof.
摘要:
The present invention provides a propylene/1-butene random copolymer (PBR) having excellent flexibility, impact resistance, heat resistance and low-temperature heat-seal properties, a polypropylene composition containg the copolymer, a sheet, film or stretched film comprising the composition and a composite film having a layer of the composition. The propylene/1-butene random copolymer contains 60 to 90 mol % of propylene units and 10 to 40 mol % of 1-butene units and has a triad isotacticity of not less than 85% and not more than 97.5%, a molecular weight distribution (Mw/Mn) of from 1 to 3, an intrinsic viscosity of from 0.1 to 12 dl/g, a melting point (Tm) of from 40 to 120° C., and satisfies the following relation 146 exp(−0.022M)≧Tm≧125 exp(−0.032M) wherein Tm represents a melting point and M (mol %) represents a content of 1-butene constituent units. The invention, further, provides a transition metal compound useful as an olefin polymerization catalyst and an olefin polymerization catalyst containing the transition metal compound. The transition metal compound is represented by the following formula (2a): wherein each of R1 and R3 is hydrogen, R2 and R4 are selected from a hydrocarbon group and silicon-containing group, R5 to R13 are selected from hydrogen, a hydrocarbon group and silicon-containing group, and adjacent substituent groups R5 to R12 may be linked to form a ring. R14 is an aryl group, and R13 and R14 may be linked to form a ring. M is a Group 4 transition metal, Y is a carbon atom, Q is halogen, etc, and j is an integer of 1 to 4.