摘要:
A propylene polymer which is constituted of 10 to 40 wt % room-temperature n-decane soluble part (Dsol) and 60 to 90 wt % room-temperature n-decane insoluble part (Dinsol), comprises skeletons derived from propylene (MP) and at least one kind of olefin (MX) selected from ethylene and C4 or more α-olefins, and satisfies all of the following requirements [1] to [5]. The polymer is characterized by having a high melting point and a high molecular weight and is suitable for use in producing various moldings therefrom. [1] the molecular weight distribution (Mw/Mn) of both Dsol and Dinsol as determined by GPC is 4.0 or less; [2] the melting point (Tm) of Dinsol is 156° C. or more; [3] the sum of the 2,1-bond content and the 1,3-bond content in Dinsol is 0.05 mol % or less; [4] the intrinsic viscosity [η] (dl/g) of Dsol satisfies the relationship 2.2
摘要翻译:丙烯聚合物由10〜40重量%的室温正癸烷可溶部分(D> sol)和60〜90重量%的室温正癸烷不溶部分(D&lt; 包括衍生自丙烯(MP)的骨架和选自乙烯和C 4或更多α-烯烃的至少一种烯烃(MX),并且满足以下所有要求[1]至[5] 。 聚合物的特征在于具有高熔点和高分子量,并且适用于从其生产各种模制品。 [1]通过GPC测定的D&amp; S&gt;和D&amp; S&gt;两者的分子量分布(Mw / Mn)为4.0以下; [2] D SUB>的熔点(Tm)为156℃以上; [3] D insol中的2,1-键含量和1,3-键含量的总和为0.05摩尔%以下; [4] D SUB>的特性粘度η(dl / g)满足关系式2.2 <η<6.0; 和[5]衍生自D insol中的烯烃(MX)的骨架的浓度为3.0重量%以下。
摘要:
The present invention relates to a propylene random copolymer which satisfies the following requirements [1] to [4], and to various useful molded products obtained by molding the propylene random copolymer: [1] the concentration (Pa, % by mole) of a skeletal constituent derived from propylene (a), and the concentration (Px, % by mole) of a skeletal constituent derived from at least one olefin selected from ethylene (b) and α-olefins having 4 to 20 carbon atoms (c), each of which is contained in the propylene random copolymer, satisfy the following relational expressions (Eq-1) to (Eq-3): 85≦Pa
摘要:
The present invention relates to a propylene random copolymer which satisfies the following requirements [1] to [4], and to various useful molded products obtained by molding the propylene random copolymer: [1] the concentration (Pa, % by mole) of a skeletal constituent derived from propylene (a), and the concentration (Px, % by mole) of a skeletal constituent derived from at least one olefin selected from ethylene (b) and α-olefins having 4 to 20 carbon atoms (c), each of which is contained in the propylene random copolymer, satisfy the following relational expressions (Eq-1) to (Eq-3): 85≦Pa
摘要:
Packaging propylene resin compositions are excellent in balance in high transparency, rigidity, low-temperature impact resistance and blocking resistance. Retort films, protective films, medical container packaging films and freshness-keeping films, and sheets for similar purposes are obtained from the compositions. A packaging propylene resin composition includes a propylene polymer (A) satisfying specific requirements and a propylene/ethylene copolymer (B) satisfying specific requirements. In another packaging propylene resin composition, Dinsol and Dsol satisfy specific requirements.
摘要:
The invention provides a propylene random block copolymer (A) that has a melt flow rate from 0.1 to 100 g/10 min and a melting point from 100 to 155° C. and includes 90 to 60% by weight of a portion insoluble (Dinsol) in n-decane at room temperature and 10 to 40% by weight of a portion soluble (Dsol) in n-decane at room temperature, wherein the Dinsol satisfies the following requirements (1) through (3) and the Dsol satisfies the following requirements (4) through (6). The invention further provides molded articles such as sheets, films, injection molded articles, hollow molded articles, injection blow molded articles and fibers, which are formed of the propylene random block copolymer (A) or a propylene resin composition containing the propylene random block copolymer (A). (1) The molecular weight distribution (Mw/Mn) obtained by GPC of the Dinsol is from 1.0 to 3.5, (2) the content of skeletons derived from ethylene in the Dinsol is from 0.5 to 13% by mole, (3) the total amount of 2,1- and 1,3-propylene units in the Dinsol is 0.2% by mole or less, (4) the molecular weight distribution (Mw/Mn) obtained by GPC of the Dsol is from 1.0 to 3.5, (5) the intrinsic viscosity [η] in decalin at 135° C. of the Dsol is from 1.5 to 4 dl/g and (6) the content of skeletons derived from ethylene in the Dsol is from 15 to 35% by mole.
摘要:
[Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and low thermal shrinkage ratio.[Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component a propylene homopolymer (A) that satisfies the following requirements (1) to (4) and (7): (1) the intrinsic viscosity [η] is 1 dl/g or more and less than 7 dl/g; (2) the mesopentad fraction ranges from 94.0% to 99.5%; (3) the integral elution volume during heating to 100° C. is 10% or less; (4) the melting point ranges from 153° C. to 167° C.; and (7) in an elution temperature-elution volume curve, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and a half-width of 7.0° C. or less.
摘要:
It is an object of the present invention to provide a modified propylene resin containing very small amounts of low-crystalline and low-molecular-weight components. The present invention relates to a modified propylene resin characterized by satisfying the following requirements (1) to (4). (1) The melting point (Tm) measured with a differential scanning calorimeter (DSC) is 140° C. or higher. (2) The amount of grafts of ethylenic unsaturated bond-containing monomer after hot xylene washing is 0.1 to 5 percent by weight. (3) The amount of components soluble in o-dichlorobenzene at 70° C. is 1.5 percent by weight or less. (4) The intrinsic viscosity [η] is 0.1 to 4 dl/g.
摘要:
[Object] To provide a propylene homopolymer suitable for capacitor films having high withstand voltage and a stretched film formed by stretching the propylene homopolymer.[Solution] A propylene homopolymer of the present invention for capacitors satisfies the following requirements (i) to (v) and (ix): (i) the MFR is 1 to 10 g/10 minutes; (ii) the meso pentad fraction (mmm) measured by 13C-NMR is 0.940 to 0.995; (iii) the integrted amount of elution at 90° C. by CFC using o-dichlorobenzene is 0.5% by weight or less; (iv) the melting point measured using DSC is 152° C. or more; (v) the chlorine content is 2 ppm by weight or less; and (ix) in an elution temperature-elution volume curve measured by cross-fractionation chromatography (CFC) using o-dichlorobenzene, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and half width of 7.0° C. or less.
摘要:
Propylene polymers and propylene resin compositions containing the polymers are used as molded articles used under stress for a long period such as automotive parts, housing parts, home appliance parts and electric power tool parts. Stress-resistant molded articles of the invention are obtained from these materials. A propylene homopolymer (A) satisfies the following requirements (1) to (3), and a polypropylene resin composition contains the propylene homopolymer (A). (1) The ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) according to GPC is in the range of 1.2 to 3.5. (2) Mn is in the range of 35,000 to 400,000. (3) The content of components soluble in o-dichlorobenzene at 90° C. is not more than 4 wt %.
摘要:
[Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and low thermal shrinkage ratio.[Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component a propylene homopolymer (A) that satisfies the following requirements (1) to (4) and (7): (1) the intrinsic viscosity [η] is 1 dl/g or more and less than 7 dl/g; (2) the mesopentad fraction ranges from 94.0% to 99.5%; (3) the integral elution volume during heating to 100° C. is 10% or less; (4) the melting point ranges from 153° C. to 167° C.; and (7) in an elution temperature-elution volume curve, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and a half-width of 7.0° C. or less.