Abstract:
A method for manufacturing a multilayer electronic component includes the steps of preparing a laminate including a plurality of laminated insulating layers and a plurality of internal electrodes disposed along interfaces between the insulating layers, edges of the internal electrodes being exposed at a predetermined surface of the laminate, and forming an external electrode on the predetermined surface to electrically connect exposed the edges of the internal electrodes. The step of forming an external electrode includes a plating step of forming a continuous plating film by depositing plating deposits on the edges of the internal electrodes exposed at the predetermined surface and by performing plating growth to be connected to each other, and a heat treatment step of performing a heat treatment at an oxygen partial pressure of about 5 ppm or less and at a temperature of about 600° C. or more.
Abstract:
A method for manufacturing a multilayer electronic component includes the steps of preparing a laminate including a plurality of laminated insulating layers and a plurality of internal electrodes disposed along interfaces between the insulating layers, edges of the internal electrodes being exposed at a predetermined surface of the laminate, and forming an external electrode on the predetermined surface to electrically connect exposed the edges of the internal electrodes. The step of forming an external electrode includes a plating step of forming a continuous plating film by depositing plating deposits on the edges of the internal electrodes exposed at the predetermined surface and by performing plating growth to be connected to each other, and a heat treatment step of performing a heat treatment at an oxygen partial pressure of about 5 ppm or less and at a temperature of about 600° C. or more.
Abstract:
In order to prevent the ingress of moisture into a void section of a component main body of a ceramic electronic component, at least the component main body of the ceramic electronic component is provided with water repellency using a water repellent agent. The water repellent agent is dissolved in a supercritical fluid such as, a supercritical CO2 fluid, as a solvent to provide at least the component main body with water repellency. After providing the water repellency, the water repellent agent on the outer surface of the component main body is removed. As the water repellent agent, a silane coupling agent may be used.
Abstract:
In a method of forming a plating layer for an external terminal electrode by applying, for example, copper plating to an end surface of a component main body with respective ends of internal electrodes exposed, and then applying a heat treatment at a temperature of about 1000° C. or more in order to improve the adhesion strength and moisture resistance of the external terminal electrode, the plating layer may be partially melted to decrease the bonding strength of the plating layer. In the step of applying a heat treatment at a temperature of about 1000° C. or more to a component main body with plating layers formed thereon, the average rate of temperature increase from room temperature to the temperature of about 1000° C. or more is set to about 100° C./minute or more. This average rate of temperature increase maintains a moderate eutectic state in the plating layer and ensures a sufficient bonding strength of the plating layer.