Abstract:
In a method for manufacturing ceramic substrates and module components, an unfired mother ceramic substrate is cut at predetermined positions for division into separate unfired ceramic substrates. The cut unfired mother ceramic substrate is pressed such that pressure is applied parallel or substantially parallel to its main surfaces so that the cross-sectional end surfaces created in the cutting step are joined. The unfired mother ceramic substrate including end surface junctions, resulting from joining of the cross-sectional end surfaces, is fired. The fired mother ceramic substrate is broken along the end surface junctions to divide it into separate ceramic substrates.
Abstract:
Provided is a mother ceramic substrate that, when divided into individual substrates (ceramic substrates), can be divided to cause divided end surfaces to be perpendicular to principal surfaces of the individual substrates, and that can provide ceramic substrates with high form accuracy; an individual ceramic substrate obtained from the mother ceramic substrate; a module component including the ceramic substrate; and a method of manufacturing a mother ceramic substrate. In a mother ceramic substrate that can be divided at a predetermined position and separated into a plurality of individual substrates, a dividing groove that defines a division position is formed in a principal surface on one side, and a protruding thread is formed on a principal surface on another side at a position corresponding to a position of the dividing groove formed in the principal surface on the one side in view in a thickness direction of the mother ceramic substrate.
Abstract:
A component main body has a multilayer structure having a thickness and in which a first dielectric glass layer in which an internal conductor is embedded and having a thickness is interposed between a pair of magnetic layers containing a ferrite material as a primary component, and each of a pair of second dielectric glass layers is disposed on one of principal surfaces of the pair of magnetic layers. First to fourth outer electrodes are disposed on both end portions of the component main body. The thickness of at least one of the pair of second dielectric glass layers that faces a mounting substrate is about 10 μm to 64 μm.
Abstract:
A chip-type fuse includes a main body portion composed of an insulating material, a fuse conductor that is disposed inside the main body portion and that has both end portions exposed at the main body portion, and a pair of outer electrodes that cover respective end portions of the main body portion and that are connected to respective end portions of the fuse conductor. A hollow portion is present inside the main body portion, and the fuse conductor has a fusing portion disposed along the wall surface of the hollow portion.
Abstract:
In a method for manufacturing ceramic substrates and module components, an unfired mother ceramic substrate is cut at predetermined positions for division into separate unfired ceramic substrates. The cut unfired mother ceramic substrate is pressed such that pressure is applied parallel or substantially parallel to its main surfaces so that the cross-sectional end surfaces created in the cutting step are joined. The unfired mother ceramic substrate including end surface junctions, resulting from joining of the cross-sectional end surfaces, is fired. The fired mother ceramic substrate is broken along the end surface junctions to divide it into separate ceramic substrates.