Abstract:
A method for manufacturing a ceramic electronic component in which a plated electrode can be formed in a region of the surface of a ceramic base body formed of a titanium-containing metal oxide. The method includes preparing a ceramic base body containing a titanium-containing metal oxide, forming a low-resistance section by modifying the metal oxide through irradiation of part of a surface layer portion of the ceramic base body with a pulse laser with a peak power density of 1×106 W/cm2 to 1×109 W/cm2 and a frequency of 500 kHz or less, and forming an electrode on the low-resistance section by electroplating. The laser irradiation generates an O defect in a titanium-containing metal oxide, such as BaTiO3 to form an n-type semiconductor. Since this semiconductor section has a lower resistance value than the metal oxide, plating metal can be selectively deposited by electroplating.
Abstract:
A method for producing a laminated ceramic capacitor allows a surface of at least a portion of a ceramic element body chip to be brought into contact with a plated layer formed in advance in a mold member, and performs heat processing on the ceramic element body chip in that contact state, thereby to form an external conductor layer made of the plated layer on the surface of at least the portion of the ceramic element body chip. Thus, a method and an apparatus for producing a ceramic electronic component accurately and precisely controls the thickness of the external conductor layer to be small, and easily controls the length of the external conductor layer.
Abstract:
In order to prevent the ingress of moisture into a void section of a component main body of a ceramic electronic component, at least the component main body of the ceramic electronic component is provided with water repellency using a water repellent agent. The water repellent agent is dissolved in a supercritical fluid such as, a supercritical CO2 fluid, as a solvent to provide at least the component main body with water repellency. After providing the water repellency, the water repellent agent on the outer surface of the component main body is removed. As the water repellent agent, a silane coupling agent may be used.
Abstract:
A ceramic body including therein conductors more effectively prevents ingress of moisture into voids between the conductors and the ceramic body. A supercritical fluid containing a monomer flows in the voids between internal electrode layers and a ceramic laminated body. Then, the voids between the internal electrode layers and the ceramic laminated body are filled with a polymer by the polymerization of the monomer.