Abstract:
A fluorescence intensity analyzing and fluorescence image synthesizing system and method are disclosed. The first fluorescence intensity detection device successively detects the plurality of first fluorescence intensities according to the first timing and the second fluorescence intensity detection device successively detects the plurality of second fluorescence intensities according to the second timing, and then the picture processing device analyzes the first and second timings and synthesizes the first and second fluorescence intensity ranges into the synthesized picture according to the fluorescence intensities, whereby the image processing technology may be used to calculate the fluorescence target range and thus mark the fluorescence target range.
Abstract:
An apparatus is provided for detecting transmittance of a trench. The trench is located on an infrared-transmittable material, which can be a wafer. The wafer is obtained after a ditching process. An image of the wafer is fetched. The contrast of the image is greatly enhanced. The contrast-enhanced image is used for automated analysis of the transmittance of the trench. Accuracy of detecting the transmittance is improved. Hence, the present invention uses a simple structure to detect transmittance defects of the trench for ensuring goodness of the wafer.
Abstract:
A multi-image capture device capturing images by means of circular motion controls the shift movement, along a semi-circular measuring rod, of a moving mechanism by a location control device. Furthermore, a rotary control device is used to control the positioning and image-capturing angle of a second image capture device fixed on the rotary mechanism. Thereby, a first image capture device and the second image capture device are of a co-circle configuration where the optical axis of the first image capture device and the second image capture device overlap to form a center of the co-circle. Such a configuration can broaden the visual range of the image capture device, and allows quick calibration of the image capture device according to positioning of shift movement and image-capturing angles.
Abstract:
An image correlation for images having speckle pattern is evaluated. Modulation transfer function (MTF) curves of speckle-pattern images captured at different times are figured out. Whether a correlation value between the MTF curves meets a threshold is checked. If the correlation value is smaller than the threshold, speckle-pattern images are re-selected for re-figuring out the MTF curves and the correlation value. Thus, error of strain and displacement for digital image correlation owing to blurring images of the on-moving target object is figured out; calculation time of the digital image correlation is reduced; and accuracy on measuring physical parameters of the target object before and after movement is improved for digital image correlation.
Abstract:
A system of computing surface reconstruction, in-plane and out-of-plane displacements and strain distribution utilizes the optical switching element to switch the reference beam to analyze the images of the test object before and after deformation, to measure the topography, in-plane and out-of-plane displacements and surface two-dimensional strain distribution on the test surface of the test object, and thus to increase the measurement range on the test surface of the test object with the use of image registration. Thereby, the complexity and error of scanning the test object can be reduced. Such a system need not to move the image capturing device or test object to generate relative displacement for reaching the measurement effect of the test surface of the test object in three-dimensional coordinates.
Abstract:
A surgical image pickup system utilizes an adjustable lens set and a complex lens set to change the direction of the incident light emitted from the light source and the position of the surgical site on which the incident light projects. The eyepiece and the sensor have the same field of view and the same optical axis such that first image generated by the sensor and a second image generated by the eyepiece are the same. The sensor transmits the first image to the external display for display by wireless communication. By means of the foregoing configuration, the second image which doctor utilizes the eyepiece to see and the first image which the external display displays are the same, thereby facilitating the operation of surgery.
Abstract:
The present invention discloses a method of determining a whole-scene image by using multiple image-capturing devices, and the method has two main features including non-contact formation digital image method and the parallax elimination process for captured images. The former feature uses a concyclic fitting calculation to easily determine the locations and orientations of the image-capturing devices, so as to achieve the objective of assisting in capturing the whole-scene image. The latter feature can effectively improve the image quality, so as to effectively solve the problems in conventional technology.
Abstract:
An image-based refractive index measuring system comprises an optical device and an electronic device. The optical device is used to guiding an external light which is passed through an analyte. The electronic device comprises an image capture module, an image analyze module and a display module. The image capture module generates a first image by capturing the external light source. The image analyze module connects to the image capture module to receive the first image, and analyzes the first image in order to generate an analytical result comprising the refractive index of the analyte. The display module connects to the image analyze module to receive and display the analytical result.
Abstract:
An image-based diopter measuring system comprises an optical device and an electronic device. The optical device is used to guiding an external light which is passed through an analyte. The electronic device comprises an image capture module, an image analyze module and a display module. The image capture module generates a first image by capturing the external light source. The image analyze module connects to the image capture module to receive the first image, and analyzes the first image in order to generate an analytical result comprising the diopter of the analyte. The display module connects to the image analyze module to receive and display the analytical result.
Abstract:
The present disclosure illustrates a non-contact measurement device for a radius of curvature and a thickness of a lens and a measurement method thereof. The non-contact measurement device utilizes a non-contact probe to integrate a motor, an optical scale and an electronic control module, so as to achieve measurement for the radius of curvature and the thickness of the lens. The present disclosure adopts astigmatism to achieve fast and precise focusing. To overcome the spherical aberration problem, thickness measurement can be implemented by the non-contact measurement device through a formula calculation and utilization of a correction plate, wherein single one probe is used for the measurement herein. For the thicker lens, the non-contact measurement device can be extended to use dual probes, so as to detect the top and bottom sides of the lens.