Abstract:
A multi-image capture device capturing images by means of circular motion controls the shift movement, along a semi-circular measuring rod, of a moving mechanism by a location control device. Furthermore, a rotary control device is used to control the positioning and image-capturing angle of a second image capture device fixed on the rotary mechanism. Thereby, a first image capture device and the second image capture device are of a co-circle configuration where the optical axis of the first image capture device and the second image capture device overlap to form a center of the co-circle. Such a configuration can broaden the visual range of the image capture device, and allows quick calibration of the image capture device according to positioning of shift movement and image-capturing angles.
Abstract:
An image correlation for images having speckle pattern is evaluated. Modulation transfer function (MTF) curves of speckle-pattern images captured at different times are figured out. Whether a correlation value between the MTF curves meets a threshold is checked. If the correlation value is smaller than the threshold, speckle-pattern images are re-selected for re-figuring out the MTF curves and the correlation value. Thus, error of strain and displacement for digital image correlation owing to blurring images of the on-moving target object is figured out; calculation time of the digital image correlation is reduced; and accuracy on measuring physical parameters of the target object before and after movement is improved for digital image correlation.
Abstract:
A system of computing surface reconstruction, in-plane and out-of-plane displacements and strain distribution utilizes the optical switching element to switch the reference beam to analyze the images of the test object before and after deformation, to measure the topography, in-plane and out-of-plane displacements and surface two-dimensional strain distribution on the test surface of the test object, and thus to increase the measurement range on the test surface of the test object with the use of image registration. Thereby, the complexity and error of scanning the test object can be reduced. Such a system need not to move the image capturing device or test object to generate relative displacement for reaching the measurement effect of the test surface of the test object in three-dimensional coordinates.
Abstract:
A concentric circle adjusting apparatus for a multiple image capturing device is disclosed, where a first and second correction angles for correcting a first and second image capturing devices are respectively calculated by a control device according to a link length of a standard link, a first angle, a second angle, a first distance, and a second distance, respectively, so that a first and second platforms are controlled according to the first and second control commands to rotate the first and second image capturing device by the first and second correction angles, respectively, whereby the efficacy of an increased visible range and a rapid calibration may be achieved.
Abstract:
A concentric circle adjusting apparatus for a multiple image capturing device is disclosed, where a first and second correction angles for correcting a first and second image capturing devices are respectively calculated by a control device according to a link length of a standard link, a first angle, a second angle, a first distance, and a second distance, respectively, so that a first and second platforms are controlled according to the first and second control commands to rotate the first and second image capturing device by the first and second correction angles, respectively, whereby the efficacy of an increased visible range and a rapid calibration may be achieved.
Abstract:
The conventional white-light interferometer, confocal microscope, and ellipsometer are integrated as one device set in a functional sense, and the geometrical parameters conventionally measured may be deduced on the integrated device. Thus, the advantages and efficacies of equipment cost saving, on-line measuring, rapid monitoring, reduced manufacturing time, and reduced possibility of object damage during the manufacturing process may be secured, compared with the prior art.
Abstract:
The present invention discloses a method of determining a whole-scene image by using multiple image-capturing devices, and the method has two main features including non-contact formation digital image method and the parallax elimination process for captured images. The former feature uses a concyclic fitting calculation to easily determine the locations and orientations of the image-capturing devices, so as to achieve the objective of assisting in capturing the whole-scene image. The latter feature can effectively improve the image quality, so as to effectively solve the problems in conventional technology.