Abstract:
An image-based refractive index measuring system comprises an optical device and an electronic device. The optical device is used to guiding an external light which is passed through an analyte. The electronic device comprises an image capture module, an image analyze module and a display module. The image capture module generates a first image by capturing the external light source. The image analyze module connects to the image capture module to receive the first image, and analyzes the first image in order to generate an analytical result comprising the refractive index of the analyte. The display module connects to the image analyze module to receive and display the analytical result.
Abstract:
An image-based diopter measuring system comprises an optical device and an electronic device. The optical device is used to guiding an external light which is passed through an analyte. The electronic device comprises an image capture module, an image analyze module and a display module. The image capture module generates a first image by capturing the external light source. The image analyze module connects to the image capture module to receive the first image, and analyzes the first image in order to generate an analytical result comprising the diopter of the analyte. The display module connects to the image analyze module to receive and display the analytical result.
Abstract:
A geomorphological structure monitoring system is disclosed, which comprises a supporting base having an accommodating space and a plurality of through holes, and at least a portion of the supporting base is embedded under a ground; a plurality of sensing devices arranged in the accommodating space vertically and embedded under the ground, the sensing devices may generate a sensing signal when the sensing devices are exposed from the ground due to the structural change of the ground; a signal processing device receiving and processing the sensing signal; and a transmission device connecting the sensing devices in series and the signal processing device.
Abstract:
An apparatus is provided for detecting transmittance of a trench. The trench is located on an infrared-transmittable material, which can be a wafer. The wafer is obtained after a ditching process. An image of the wafer is fetched. The contrast of the image is greatly enhanced. The contrast-enhanced image is used for automated analysis of the transmittance of the trench. Accuracy of detecting the transmittance is improved. Hence, the present invention uses a simple structure to detect transmittance defects of the trench for ensuring goodness of the wafer.
Abstract:
The present invention provides a reflective condensing interferometer for focusing on a preset focus. The reflective condensing interferometer includes a concave mirror set, a convex mirror, a light splitting element, and a reflecting element. The concave mirror set has first and second concave surface portions which are oppositely located on two sides of a central axis passing through the preset focus and are concave on a surface facing the central axis and the preset focus. Light is preset to be incident in parallel to the central axis in use. The convex mirror is disposed between the concave mirror set and the preset focus on the central axis, and is convex away from the preset focus. The light splitting element vertically intersects with the central axis between the convex mirror and the preset focus. The reflecting element is disposed between the light splitting element and the convex mirror.
Abstract:
An apparatus is provided for detecting transmittance of a trench. The trench is located on an infrared-transmittable material, which can be a wafer. The wafer is obtained after a ditching process. An image of the wafer is fetched. The contrast of the image is greatly enhanced. The contrast-enhanced image is used for automated analysis of the transmittance of the trench. Accuracy of detecting the transmittance is improved. Hence, the present invention uses a simple structure to detect transmittance defects of the trench for ensuring goodness of the wafer.
Abstract:
A multi-image capture device capturing images by means of circular motion controls the shift movement, along a semi-circular measuring rod, of a moving mechanism by a location control device. Furthermore, a rotary control device is used to control the positioning and image-capturing angle of a second image capture device fixed on the rotary mechanism. Thereby, a first image capture device and the second image capture device are of a co-circle configuration where the optical axis of the first image capture device and the second image capture device overlap to form a center of the co-circle. Such a configuration can broaden the visual range of the image capture device, and allows quick calibration of the image capture device according to positioning of shift movement and image-capturing angles.
Abstract:
An image correlation for images having speckle pattern is evaluated. Modulation transfer function (MTF) curves of speckle-pattern images captured at different times are figured out. Whether a correlation value between the MTF curves meets a threshold is checked. If the correlation value is smaller than the threshold, speckle-pattern images are re-selected for re-figuring out the MTF curves and the correlation value. Thus, error of strain and displacement for digital image correlation owing to blurring images of the on-moving target object is figured out; calculation time of the digital image correlation is reduced; and accuracy on measuring physical parameters of the target object before and after movement is improved for digital image correlation.
Abstract:
An integrated device includes a laser ranging module, a dual-branched fiber bundle, a beam splitter, and an image receiving module. The laser ranging module includes a light source, an optical receiver and a computing unit. The fiber bundle is disposed between the laser ranging module and the beam splitter. A target reflects a measuring beam emitted by the light source to form a reflected beam. The beam splitter splits the reflected beam into a first reflected beam and a second reflected beam. The first reflected beam is transmitted to the optical receiver through the fiber bundle to generate a measurement signal. The computing unit receives the measurement signal to calculate a distance between the target and the fiber bundle. The image receiving module is disposed on the optical path of the second reflected beam to receive the second reflected beam and displays the image of the target.
Abstract:
Disclosed is a composite hydrological monitoring system, in which a counterweight component and a test component are respectively connected to both opposite ends of a strip and a plurality of sensors are disposed at different vertical positions. Accordingly, the scour depth can be measured by sensing the location of the counterweight component, whereas the water level and/or flow velocity can be determined by signals from the sensors. When the counterweight component moves downward with sinking of the riverbed, the strip would be pulled down and thus causes the test component to present a change in mechanical energy. Accordingly, the sinking depth can be measured by sensing the change of the mechanical energy. Additionally, since the water level variation would cause signal changes of the sensors arranged in a row along a vertical direction, the change of water level can be determined accordingly.