Abstract:
A method for manufacturing an amorphous multielement metal oxide hydroxide film includes: A liquid mixture is formed by dissolving an oxidizing agent selected from a group consisting of potassium permanganate, potassium chromate, potassium dichromate and potassium ferrate, and a reducing agent in a solvent. The oxidizing agent forms an oxometallate anion having a first metal atom with a first valence number. The reducing agent forms a metal cation having a second metal atom with a third valence number. An amorphous multielement metal oxide hydroxide film is deposited on a substrate by soaking the substrate in the liquid mixture. The amorphous multielement metal oxide hydroxide film includes a multielement metal oxide hydroxide having the first metal atom with a second valence smaller than the first valence number and the second metal atom with a fourth valence number larger than the third valence number.
Abstract:
A method for manufacturing an amorphous multielement metal oxide hydroxide film includes: A liquid mixture is formed by dissolving an oxidizing agent selected from a group consisting of potassium permanganate, potassium chromate, potassium dichromate and potassium ferrate, and a reducing agent in a solvent. The oxidizing agent forms an oxometallate anion having a first metal atom with a first valence number. The reducing agent forms a metal cation having a second metal atom with a third valence number. An amorphous multielement metal oxide hydroxide film is deposited on a substrate by soaking the substrate in the liquid mixture. The amorphous multielement metal oxide hydroxide film includes a multielement metal oxide hydroxide having the first metal atom with a second valence smaller than the first valence number and the second metal atom with a fourth valence number larger than the third valence number.
Abstract:
A method for photodepositing a particle on a graphene-semiconductor hybrid panel is disclosed. The method for photodepositing the particle on the graphene-semiconductor includes providing a graphene-semiconductor hybrid panel, dipping the graphene-semiconductor hybrid panel in a fluid containing a precursor, and irradiating the graphene-semiconductor hybrid panel using a light source until the precursor has been reduced or oxidized to form a particle photodeposited on a surface of a graphene sheet. The graphene-semiconductor hybrid panel includes a semiconductor substrate and the graphene sheet adhered to the semiconductor substrate. The light source has an energy equal to or higher than a band gap of the semiconductor substrate. As such, the particle can be directly deposited on the surface of the graphene sheet without the need of modifying the graphene.
Abstract:
A method for manufacturing a nanostructured metal oxide calcinate suitable for biosensor through a procedure of redox reaction is disclosed in this invention. The nanostructured metal oxide calcinate is free of impurities and produced with better electrocatalytic activity and better conductivity. Thus, an electrode of biosensor can be modified via the nanostructured metal oxide calcinate. The method for manufacturing the nanostructured metal oxide calcinate includes: disposing a first metal material and a second metal material into a reaction slot and making the first metal material and the second metal material dissolved within a solvent to form a mixture, wherein the pH value of the mixture ranges between 0 to 7, the mixture performs a redox reaction process for obtaining a metal oxide material; and eventually calcining the metal oxide material for obtaining a nanostructured metal oxide calcinate.
Abstract:
A method for manufacturing a nanostructured metal oxide calcinate suitable for biosensor through a procedure of redox reaction is disclosed in this invention. The nanostructured metal oxide calcinate is free of impurities and produced with better electrocatalytic activity and better conductivity. Thus, an electrode of biosensor can be modified via the nanostructured metal oxide calcinate. The method for manufacturing the nanostructured metal oxide calcinate includes: disposing a first metal material and a second metal material into a reaction slot and making the first metal material and the second metal material dissolved within a solvent to form a mixture, wherein the pH value of the mixture ranges between 0 to 7, the mixture performs a redox reaction process for obtaining a metal oxide material; and eventually calcining the metal oxide material for obtaining a nanostructured metal oxide calcinate.